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Abstract. Three-dimensional point clouds play a fundamental role in
a wide array of fields, spanning from computer vision to robotics and
autonomous navigation. Modeling the 3D shape of objects from these
point clouds is important for various applications, including 3D shape
completion and object recognition. This paper presents a complex-valued
product-unit network for data-driven 3D shape completion. Using prod-
uct units, sparse superpositions of complex power laws, including sparse
polynomial functions, are fitted to incomplete 3D point clouds and used
for extrapolating the data in the 3D space. In computer-vision appli-
cations, this task occurs frequently, e.g., when only partial views are
available or occlusions hinder the acquisition of the full point cloud. We
conduct a comparative analysis with a standard neural network to em-
phasize the superior extrapolation capabilities of product-unit networks
within the 3D space. Furthermore, we present a real-world task that
serves as a tangible demonstration of the proposed method’s utility in
the context of completing incomplete point cloud data acquired with a
3D scanner. This research contributes new insights into the field of neural
network applications for 3D point cloud processing, revealing the broad
potential of product-unit networks in this domain.

Keywords: Product units · 3D shape completion · Data-driven methods

1 Introduction

Shape completion is the process of inter- or extrapolating missing data that de-
scribes object shape. Incomplete shapes and point clouds are often encountered
in computer-vision applications during data acquisition [2]. Often, only partial
views are available or a part of the object is hidden due to self-occlusion or
other objects placed in the viewing path. The missing data hinders both object
recognition and point-cloud matching required for pose estimation. Hence, find-
ing approaches to recover the complete object from partial data is a topic of
high importance in current computer vision research, since it is needed for many
applications, e.g., robotic grasping [1, 3, 15,22,23,28].

Approaches for 3D shape completion can be distinguished in some simplifica-
tion as either data driven or learning based. Learning-based approaches learn a
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set of model shape classes from training data and match them directly to obser-
vations to perform shape completion [2, 27] or pose estimation [28]. Depending
on the scenario, this may limit the method to some extent to the shape classes
that have been included in the training data.

Different from that, data-driven approaches fit parametric models to partial
data to derive a representation of the surface ad hoc. Polynomial surface models
are a common choice for this task [4, 19, 20], but they also require some prior
knowledge about the object shape to select a suitable model type [3, 10, 16, 17,
26, 29]. When the model type is unknown beforehand, many possibilities have
to be considered to find a suitable sparse polynomial representation, which can
render this task intractable.

Similar problems arise in machine-learning approaches when transforming
the data into a higher-dimensional space [9,24] or including nonlinear units rep-
resenting higher-order polynomials in the network [8] to create nonlinear models
(in a data-driven approach). Here, either the basis of this nonlinear space or a
nonlinear kernel must be provided beforehand. Moreover, calculations in higher
dimensions can be very complex and difficult [25]. The inclusion of nonlinear
units in the network also allows better modeling of nonlinear relationships, but,
again, the number of combinations of polynomial terms increases exponentially
with the order of the polynomial terms, also leading to considerable computa-
tional complexity [7].

To address this problem, we propose complex-valued product-unit networks
to generate shape models ad hoc from the available 3D point-cloud data. These
shape models are sparse superpositions of complex power laws, including sparse
polynomial functions. This is not an overly restrictive assumption on the model in
many cases, since much more complex functions can often be well approximated
by Taylor or fractional Taylor series expansions, i.e., linear combinations of power
laws. Since the required leading terms of the sparse polynomial can be learned
from the data directly, the problem of the complexity of choice is avoided.

Product-unit networks have already been shown before to have advantages
towards standard neural networks in extrapolation tasks [12]. Complex-valued
product units have been used previously to model the nonlinear properties of
nuclear masses [11]. Standard neural network typically make piecewise, quasi-
linear approximations of the functions or patterns they are meant to learn [12]
which restricts the model’s ability to extrapolate nonlinear relationships into
regions of the feature space that the training data does not cover. In this paper,
we advance the product-unit network presented in [11,12] by adapting it to the
problem of 3D shape completion and working in the complex-valued domain. We
show that the extrapolation capabilities are of the complex-valued product-unit
network are superior to the ones of a comparable standard neural network.

2 Methods

Briefly, our methodology involves the transformation of existing 3D point cloud
data into the spherical coordinate system. Subsequently, we employ a complex-

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_21

https://dx.doi.org/10.1007/978-3-031-63749-0_21
https://dx.doi.org/10.1007/978-3-031-63749-0_21


Data-driven 3D shape completion with product units 3

valued product-unit network for the purpose of predicting missing components
and modeling shape as a 2D-function denoted by r(θ, ϕ), where θ and ϕ represent
the polar and azimuth angles, respectively, r denotes the radial distance. Here
the network utilizes θ and ϕ as inputs, with r serving as output based on the
training data.

2.1 Mathematical model

In contrast to a neuron in a standard neural network, the product unit oper-
ates by calculating the product of the powers of its input values [11–13, 21].
Mathematically, its output is expressed as follows:

y =

n∏
i=1

xωi
i , (1)

where x and y denote the input and output, respectively; ω represents the weight
associated with each input, and n signifies the total number of input variables
involved. Mathematically, the product operation can be substituted with a sum-
mation operation for computational efficiency [11–13, 21], leveraging the faster
computational speed of addition over multiplication in digital systems. This
substitution involves transforming the input values into their logarithmic equiv-
alents, which are subsequently processed through a summation operation. The
resulting summation output is then passed through an exponential function, en-
abling the neural network to produce comparable results. This transformation
can be expressed mathematically as:

y = e
∑n

i=1 ωilogxi . (2)

If the input xi is negative, the logarithm loge xi becomes complex, represented
as loge |xi|+ iπ [13]. To support scenarios where the network’s operations ben-
efit from complex-valued parameters, we extend the weights and biases to the
complex-valued domain, characterized by the expression ω = a+ bi. Here, both
a and b represent real numbers, with i introducing a complex component to
the weight parameter. In alignment with the complex-valued product unit, the
weights and biases associated with other neurons, the summation units, within
the network are configured in the corresponding complex form.

It is noteworthy that the extension of a neural network into the complex-
valued space results in a doubling of both the weights and bias parameters
compared to their original quantities, while the number of neural connections
remains unchanged. However, when modelling real-valued functions, the imagi-
nary parts of the weights often converge towards zero, effectively reducing the
number of parameters by a factor again by a reality condition.

Instead of replacing all neurons in a standard neural network with complex-
valued product units, our proposed network integrates product units to replace
the standard summation units in a specific layer. This architecture harnesses
the distinct strengths inherent in each type of computational unit. Conventional
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summation units within neural networks are adept at linear and simple nonlin-
ear transformations of input data through activation functions. They specialize
in learning fundamental patterns and features within the data. Complex-valued
product units can capture more intricate nonlinear relationships within data, ow-
ing to their capability to compute products of powered inputs. This unique fea-
ture allows them to discern and model intricate dependencies and relationships
among input variables. In the context of 3D shape completion, the architecture
can be understood as a hierarchical approach to feature extraction. The standard
summation units handle linear data transformations, while the complex-valued
units build upon these to extract higher-level, more nuanced representations re-
lated to the geometry and structure of the 3D shapes. The complex nature of
weights and biases in these complex-valued product units allows for a richer rep-
resentation of data. By incorporating complex numbers, the product units are
capable of processing negative inputs without necessitating the introduction of
a threshold at the preceding layer.

2.2 Data sets and data acquisition

Firstly, we generated four different 3D point clouds to represent canonical geo-
metric shapes, namely a cone, cylinder, ellipsoid, and cuboid. Each of these point
clouds comprised precisely 30,000 data points, expressed in a Cartesian coordi-
nate system defined by the coordinates x, y, and z. The representation of shapes
in the spherical coordinate exhibits varying levels of complexity. For instance,
this coordinate system is quite suitable to represent a cone. Conversely, accu-
rately modeling a cuboid becomes exceedingly intricate due to the non-linear
mapping of points within the spherical coordinate. To address this variability,
we have categorized these shapes into three distinct levels of complexity. Shapes
suitable for representation in the spherical coordinate system, such as the cone
and cylinder, allocated 45% of their respective point clouds for training and
interpolation, while the remaining 55% was earmarked for extrapolation. This
distribution is visually depicted in Fig. 1(a) and (b). The ellipsoid, positioned at
an intermediate complexity level, had an allocation of 70% and 30%, as shown
in Fig. 1(c). In the case of the most challenging shape, the cuboid, 95% were
used for training and interpolation, leaving 5% for extrapolation, as presented
in Fig. 1(d).

Moreover, for the practical application of our methodology, we generated 3D
models representing two irregularly shaped real-world objects: a bottle and a
computer mouse, as illustrated in Fig. 2(a) and (c). This process involved utiliz-
ing a 3D scanner, specifically the Artec Space Spider [5], and its corresponding
processing software. The object underwent an initial scanning phase using the
3D scanner, and subsequently, the acquired scan data was employed to construct
a 3D model within the Artec Studio software. Following this, selected portions
of the model were intentionally removed to simulate missing parts, and a 3D
point cloud was generated through the utilization of CloudCompare software.
The resulting point clouds are presented in Fig. 2(b) and (d), each comprising
50,000 points.
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(a) Cone (b) Cylinder

(c) Ellipsoid (d) Cuboid

Fig. 1. The point clouds representing the four distinct shapes have been partitioned
into two subsets: training data and extrapolation data. The blue segment represents
the data allocated for training and interpolation purposes, and the orange segment rep-
resents the data used for extrapolation and the subsequent validation of extrapolation
results.

(a) 3D model of the bottle (b) Incomplete 3D point cloud of the bottle

(c) 3D model of the mouse (d) Incomplete 3D point cloud of the mouse

Fig. 2. 3D models and incomplete 3D point clouds of the objects, where the missing
parts are marked by red boxes.
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2.3 Data processing

In practical applications, the acquired 3D point cloud may be situated at arbi-
trary positions within the field of view. To address this variability, we initially
calculate the average of all point coordinates, designating this computed value as
the central point of the point cloud. Subsequently, a novel Cartesian coordinate
system is established with this central point serving as the origin. Conceptually,
this procedure can be interpreted as a realignment of the point cloud to coin-
cide with the origin of the pre-existing Cartesian system. Following this spatial
adjustment, the point cloud data undergoes a transformation from the Carte-
sian system to the spherical coordinate system, which is characterized by the
variables θ, ϕ, and r, and is computed by the following equations [18]:

θ = arccos
z√

x2 + y2 + z2
= arccos

z

r
= arcot

z

x2 + y2
, (3)

ϕ = atan2 (y, x) =


arctan

(
y
x

)
if x > 0

π
2 sgn y if x = 0

arctan
(
y
x

)
+ π if x < 0 ∧ y ≥ 0

arctan
(
y
x

)
− π if x < 0 ∧ y < 0

, (4)

r =
√
x2 + y2 + z2 . (5)

In this way, the association between r and (θ, ϕ) exhibits a one-to-one correspon-
dence in the majority of cases, rendering it amenable to regression networks.
Consequently, θ and ϕ serve as inputs for a regression network, with r being the
output to be predicted. This underscores the necessity of transforming data from
Cartesian coordinates to spherical coordinates. Retaining the data in Cartesian
coordinates can lead to ambiguities, as the triplet (x, y, z) does not ensure a
one-to-one mapping. For example, using x and y as neural-network inputs and z
as the output can result in multiple points sharing identical x and y values but
differing z values, thereby complicating the training of the network.

2.4 Network training

The employed complex-valued product-unit network is characterized by a stream-
lined three-layer architecture. The initial layer is composed of 10 complex-valued
summation units, followed by a subsequent layer housing 120 complex-valued
product units, the output layer features a singular complex-valued summation
unit, notably absent of any activation function, as visually depicted in Fig. 3(a).
In contrast, the reference network is a standard three-layer neural network op-
erating with ReLU activation functions, as illustrated in Fig. 3(b). ReLU is a
widely adopted activation function in neural networks, defined by the mathemat-
ical expression f = max(0, x), where x represents the input to the unit [6, 14].
As previously indicated, a complex-valued neural network exhibits twice the
weights and bias parameter count compared to the standard neural network
with the identical architecture, but the number of connections between neurons
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is the same. This increases the total number of refresh parameters. So in order to
make a fair comparison, we not only employed a standard neural network mir-
roring the exact architecture of the complex-valued product-unit network, both
featuring an equivalent number of neurons per layer, but we also introduced
an even lager standard neural network with double the network size in terms
of number of neurons. Specifically, the network comprises 20 standard summa-
tion units in the first layer, 240 standard summation units in the second layer,
and the output layer still contains only 1 standard summation unit. The larger
standard neural network not only has a comparable number of weights and bias
parameters to the number of complex-valued product units, but also has more
connections between neurons. Their total number of refresh parameters is much
greater than that of the complex-valued product-unit network.

(a) Complex-valued product-unit network (b) Standard neural network

Fig. 3. Neural networks. Neural units labelled in blue represent complex-valued neural
units.

All neural networks are configured with mean square loss functions. However, the
complex-valued product-unit network extends this loss function to accommodate
the complex-valued domain, giving

LCMSE =
1

N

N∑
i=1

(yi − ŷi)(yi − ŷi)
∗ , (6)

where yi represents the ground-truth and ŷi represents the predicted values.
This formulation considers the complex conjugate (·)∗. In contrast, the standard
neural networks employ the mean square error (LMSE) given by

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2 . (7)
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In addition, the three models underwent similar training procedures, employing
the Adam optimizer for 2500 epochs. A linear learning rate scheduler was applied
throughout these epochs, gradually reducing the learning rate from its initial
value to 0.01 times that rate. However, to ensure optimal performance from the
networks, we did not standardize the learning rates. Given that the product-unit
network is more sensitive to weight changes compared to the standard neural
network [12], it was assigned a smaller initial learning rate of 0.01. For the
standard neural networks, when training with the cone and cylinder point clouds,
a larger initial learning rate of 0.1 was used. However, during training with the
ellipsoid and cuboid point clouds, we observed that the standard neural network
performed more efficiently with an initial learning rate of 0.01 as opposed to 0.1.
Consequently, we retained the 0.01 initial learning rate for these scenarios. In
the real task, the initial learning rates were also all 0.01.

2.5 Identify the missing parts of the point cloud in the real-world
task

In the real-world task, we cannot easily obtain input data for the missing sections
of the point cloud. These data must be computationally derived. To solve this
problem, we devised a density-based algorithm specifically tailored to identify
these missing portions within 3D point clouds.

Our approach is grounded in the spherical coordinate system. Initially, we
generate numerous small-scale grids covering plausible ranges of θ and ϕ values.
Each grid represents a distinct section on the surface of the 3D model, effectively
segmenting the point cloud into discrete regions. These regions are associated
with specific intervals of θ and ϕ. The subsequent step involves quantifying the
number of points residing within each demarcated region, enabling the calcula-
tion of point density for that specific area. Subsequently, we introduce a prede-
fined threshold, expressed as a percentage. If the point density within a given
region falls below this threshold, relative to the average density of its neighboring
regions, the region is identified as missing.

Employing this algorithm enables the efficient identification of areas within
the 3D model lacking sufficient data points. This process ensures that the re-
constructed model is more accurate, enhancing this method overall robustness
in practical applications.

3 Results

3.1 Synthetic objects

The neural networks were initially trained independently using the incomplete
point cloud data. Subsequently, inputs from the complete point cloud were fed
into the trained networks for prediction. Given that the outputs of the complex-
valued product-unit network are also complex valued, it necessitates computing
the absolute value of these complex numbers. The subsequent result is a 3D point
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cloud as predicted by the trained model. It is important to emphasize that this
3D point cloud is entirely derived from the model’s predictions. The predicted
outcomes generated from input data that are part of the training set are termed
"interpolation", while those from unseen data are referred to as "extrapolation".

Each point cloud underwent five test runs on each network. Loss values were
computed for interpolation, extrapolation, and the overall total loss in each test,
while training time was recorded. The average values from these five tests are
comprehensively outlined in Table 1. Furthermore, for each shape, Fig. 4 illus-
trates the best outcomes, chosen from the five obtained through the complex-
valued product-unit network and the ten acquired via the standard neural net-
works, respectively.

Table 1. Results of predictions for the synthetic objects. "avg." signifies average,
"interp." and "extrap." denote interpolation and extrapolation, respectively. "CPUN"
is an acronym for the complex-valued product-unit network, while "NN" refers to the
standard neural network with an architecture identical to that of CPUN. Furthermore,
"NN-L" denotes the larger standard neural network with twice as many neurons per
layer except for the output layer as the NN. The best results are marked in bold.

Object Cone Cylinder
Network CPUN NN NN-L CPUN NN NN-L
Avg. interp. loss [10−04] 0.065 1.516 10.874 0.099 5.988 32.601

Avg. extrap. loss [10−04] 2.939 5.565 17.909 2.061 16.190 42.456

Avg. total loss [10−04] 1.638 3.732 14.724 1.178 11.601 38.024

Avg. training time [s] 285.2 270.75 272.81 277.48 261.78 281.69

Object Ellipsoid Cuboid
Network CPUN NN NN-L CPUN NN NN-L
Avg. interp. loss [10−04] 0.297 4.615 1.012 17.538 74.498 25.050

Avg. extrap. loss [10−04] 75.618 947.080 639.980 63.950 272.860 178.540

Avg. total loss [10−04] 26.052 326.844 219.500 19.452 82.660 31.370

Avg. training time [s] 417.14 368.05 401.38 594.53 535.46 583.17

As summarized in Table 1, for more straightforward geometries, such as the cone
and cylinder, the complex-valued product-unit network has significantly lower
average interpolation and extrapolation loss values in contrast to the two stan-
dard neural networks. When it comes to intricate geometries like the ellipsoid
and cuboid, all networks have higher loss values. However, the complex-valued
product-unit network remains superior, outperforming the standard neural net-
works across every performance metric, especially in terms of extrapolation ca-
pabilities. The observed variance in losses across different geometries aligns with
expectations, considering the inherent challenges tied to representing complex
structures such as the cuboid within a spherical coordinate system.

Additionally, a marginal difference in training duration was observed. Specifi-
cally, for networks with a comparable number of parameters, such as the complex-
valued product-unit network and the standard neural network with a larger ar-
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10 Li et al.

(a) Best CPUN result for cone (b) Best NN or NN-L result for cone

(c) Best CPUN result for cylinder (d) Best NN or NN-L result for cylinder

(e) Best CPUN result for ellipsoid (f) Best NN or NN-L result for ellipsoid

(g) Best CPUN result for cuboid (h) Best NN or NN-L result for cuboid

Fig. 4. Comparison of predicted results with ground-truth. Each plot incorporates 200
data points, which are evenly randomly sourced from interpolated and extrapolated
results. If the predicted value is exactly the same as the ground-truth value, the point
should be on the black line.
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chitecture, the complex-valued product-unit network necessitated slightly longer
training times in the majority of scenarios.

3.2 Real-world task with real objects

The real-world task diverges from theoretical task for synthetic objects in their
approach. For the real-world task, we retained the original incomplete point cloud
data, focusing solely on predicting its missing segments. That is, we engaged only
in extrapolation, excluding interpolation. Ultimately, the extrapolated results
were merged with the original data to reconstruct a complete point cloud.

We trained the complex-valued product-unit network and the standard neural
network with a larger architecture described above using two incomplete point
clouds. The absent segments of these point clouds were pinpointed utilizing the
density-based method outlined above. Following this, the trained networks were
employed to predict the designated missing segments of the point clouds. The
predictions were subsequently contrasted with the 3D point cloud derived from
the complete model, as depicted in Fig. 5.

The Real-world task offers a more realistic representation of the uncertainties
that the real world presents, as compared to the theoretical task for synthetic
objects counterparts. In our observations, when dealing with irregular objects
such as a bottle or computer mouse, the complex-valued product-unit network
delivers more accurate results than the standard neural network. As depicted
in Fig. 5, the point cloud segments predicted by the standard neural network
displays considerable distortions. This is in agreement with the results in 1D
and 2D investigated in [12]. In contrast, the predictions made by the complex-
valued product-unit network align closely with the point cloud derived from the
complete model, showing minimal deviations.

4 Conclusion and discussion

Based on our findings, it is evident that, having identical architectures, the
complex-valued product-unit network exhibits superior predictive capabilities
compared to the standard neural network. This disparity is particularly pro-
nounced in terms of extrapolation ability. Even when the standard neural net-
work is augmented with a doubling of neurons, its performance in both interpo-
lation and extrapolation still falls short of that achieved by the complex-valued
product-unit network.

The discernible discrepancy in performance becomes even more pronounced
in the real-world task, particularly when dealing with real-world objects charac-
terized by irregular shapes and structures. Standard neural networks consistently
exhibit more severe distortions in the results they predict, in stark contrast to
the highly accurate structures predicted by the complex-valued product-unit
network in the face of such complex scenarios.

For this issue, we also analysed the reasons behind it. We believe that the
effectiveness of neural network architectures is intricately tied to their inher-
ent design and their capacity to meet specific challenges. While the standard
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(a) Ground-truth (b) Result of CPUN (c) Result of NN-L

(d) Ground-truth (e) Result of CPUN

(f) Result of NN-L

Fig. 5. The outcomes predicted by the two networks are compared to the ground-truth.
The blue segment denotes the data acquired from scanning and subsequent processing
(raw data), while the orange segment illustrates the extrapolated results derived from
both networks.
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neural network stands as a versatile tool with broad applications, its perfor-
mance, especially in domains like 3D point cloud analysis, may be surpassed
by more specialized networks. The improved performance of the complex-valued
product-unit network compared to the standard neural network observed in our
experiments can presumably be attributed to its distinctive architecture. The
initial layer, composed of standard summation units, allows linear transforma-
tion of the data to be learned. As the data progresses through subsequent layers
containing complex-valued product units, the model can capture more intricate
and contextually rich information, including nonlinear coupling between inputs,
potentially crucial for understanding and completing complex 3D shapes.

However, it is worth noting the slightly prolonged training times for the
complex-valued product-unit network. This delay indicates the computational
demands of handling complex-valued operations. But, given the marked per-
formance improvement, this trade-off will be justifiable for many applications,
particularly those where accuracy is paramount.

In the course of our research, it became evident that the performance of
the neural networks in 3D point-cloud completion tasks is susceptible to rota-
tions of the object’s point cloud. Specifically, when an object’s point cloud is
centered around the y-axis and then rotated to the x-axis by a certain angle,
the predictive accuracy deteriorates. This decline in accuracy can be attributed
to the fact that the mathematical representation of the point cloud undergoes
a significant transformation after the rotation. In this regard, we believe that
combining the method for identifying the 6D pose of an object with our current
method is a good direction for our future research. Furthermore, we plan to
explore the extension of our application to the challenge of complementing the
incomplete contour of a 3D object in a camera view, particularly in situations
where occlusion issues may arise.
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18. Itō, K.: Encyclopedic dictionary of mathematics, vol. 1. MIT press (1993)
19. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceed-

ings of the fourth Eurographics symposium on Geometry processing. vol. 7, p. 0
(2006)

20. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Transac-
tions on Graphics (ToG) 32(3), 1–13 (2013)

21. Leerink, L., Giles, C., Horne, B., Jabri, M.: Learning with product units. Advances
in neural information processing systems 7 (1994)

22. Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., Ojea, J.A., Goldberg,
K.: Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds
and analytic grasp metrics. arXiv preprint arXiv:1703.09312 (2017)

23. Schmidt, P., Vahrenkamp, N., Wächter, M., Asfour, T.: Grasping of unknown ob-
jects using deep convolutional neural networks based on depth images. In: 2018
IEEE international conference on robotics and automation (ICRA). pp. 6831–6838.
IEEE (2018)

24. Schölkopf, B., Smola, A.J., Bach, F., et al.: Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press (2002)

25. Shawe-Taylor, J., Cristianini, N., et al.: Kernel methods for pattern analysis. Cam-
bridge university press (2004)

26. Smith, E., Meger, D., Pineda, L., Calandra, R., Malik, J., Romero Soriano, A.,
Drozdzal, M.: Active 3d shape reconstruction from vision and touch. Advances in
Neural Information Processing Systems 34, 16064–16078 (2021)

27. Stutz, D., Geiger, A.: Learning 3d shape completion from laser scan data with weak
supervision. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE Computer Society (2018)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_21

https://dx.doi.org/10.1007/978-3-031-63749-0_21
https://dx.doi.org/10.1007/978-3-031-63749-0_21


Data-driven 3D shape completion with product units 15

28. Wolnitza, M., Kaya, O., Kulvicius, T., Wörgötter, F., Dellen, B.: 6d pose estimation
and 3d object reconstruction from 2d shape for robotic grasping of objects. In:
2022 Sixth IEEE International Conference on Robotic Computing (IRC). pp. 67–
71 (2022). https://doi.org/10.1109/IRC55401.2022.00018

29. Zhang, Y., Liu, Z., Li, X., Zang, Y.: Data-driven point cloud objects completion.
Sensors 19(7), 1514 (2019)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_21

https://dx.doi.org/10.1007/978-3-031-63749-0_21
https://dx.doi.org/10.1007/978-3-031-63749-0_21

