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Abstract. This paper introduces the Interpoint Inception Distance (IID)
as a new approach for evaluating deep generative models. It is based on
reducing the measurement of discrepancy between multidimensional fea-
ture distributions to one-dimensional interpoint comparisons. Our method
provides a general tool for deriving a wide range of evaluation measures.
The Cramér Interpoint Inception Distance (CIID) is notable for its the-
oretical properties, including a Gaussian-free structure of feature distri-
bution and a strongly consistent estimator with unbiased gradients. Our
experiments, conducted on both synthetic and large-scale real or gener-
ated data, suggest that CIID is a promising competitor to the Fréchet
Inception Distance (FID), which is currently the primary metric for eval-
uating deep generative models.

Keywords: Deep generative model · Evaluation measure · Fréchet In-
ception Distance (FID) · Cramér Distance.

1 Introduction

In recent years, deep generative models (DGMs) have gained tremendous atten-
tion. These models are designed and trained to approximate a data distribution
via a model distribution. After completing the training, the question arises as
to how well this task was accomplished. The research on both of these issues
necessitates an appropriate measure that quantifies the difference between the
distribution of the training data and the model distribution (a training measure),
or the distribution of the test data and the model distribution (an evaluation
measure). Fig. 1 presents a diagrammatic representation of the general concept
of training and evaluating deep generative models.

The purpose of a discrepancy measure in the training process is to construct
an objective function that is optimized on the sets of real and fake data. Com-
mon choices include the Kulback-Leibler divergence (used in VAEs [17, 27]) and
the Jensen-Shannon divergence (used in GANs [12]). However, using these mea-
sures in a learning process can be challenging due to computational problems
such as complexity and vanishing gradient. Other common approaches include
using the Optimal Transport (Wasserstein) Distance, as seen in WAEs [34], or a
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Fig. 1. General concept of training and evaluation of deep generative models. The
figures were created using diagrams.net software.

kernel-based distance, as seen in CWAEs [19]. Various authors have made signifi-
cant efforts to propose novel solutions that outperform state-of-the-art methods.
However, finding non-adversarial methods that can compete with GANs is still a
challenge. These strategies often require the use of certain techniques, such as hi-
erarchical structure in Nouveau VAE (NVAE) [37], stage training in 2Stage-VAE
[7], or Latent Trick in Latent Cramér-Wold (LCW) generator [18].

The evaluation of training results is another issue related to generative mod-
eling that requires an appropriate measure. In recent years, this problem has
become even more important as deep generative models have matured enough
to be used in downstream tasks. Therefore, better and more nuanced evaluation
techniques are necessary [26]. Commonly used measures for evaluating processes
include Log-Likelihood (LL) [12], Inception Score (IS) [28], and Fréchet Inception
Distance (FID) [14]. Additionally, approaches such as Precision and Recall [21]
can provide insight into the model’s misspecification. Each of these measures has
limitations and weaknesses, as described in Section 2. It is important to note that
a good evaluation measure should be consistent with human perceptual similar-
ity judgment [5]. However, even for the most popular solutions, including those
mentioned above, there are known examples that may not conform to the ex-
pected results. This phenomenon may occur despite a well-optimized objective
and a good evaluation score [16]. In a critical study provided in [5], the author
argues that there is no evaluation method for deep generative models that is
sensitive to realistic fake samples, overfitting, mode collapse, transformations,
and sample efficiency. Therefore, although many papers have been written on
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the subject (see [5, 6]), it can still be difficult to determine the most appropriate
measure for a fair comparison of models in certain cases.

The aim of this paper is to address the aforementioned challenge. We pro-
pose the Interpoint Inception Distance (IID) as a novel approach for evaluating
deep generative models, based on the concept of reducing the measurement of
discrepancy between multidimensional feature distributions to one-dimensional
interpoint comparisons, as described by [23]. IID provides a general tool for de-
riving a wide range of evaluation measures, one of which, the Cramér Interpoint
Inception Distance (CIID), is particularly noteworthy for its desirable theoreti-
cal properties. Specifically, unlike FID, this method does not assume a Gaussian
structure for the feature distribution and allows for a strongly consistent estima-
tor with unbiased gradients, making it a relevant competitor to state-of-the-art
solutions1. Based on the results of the experiments conducted on both synthetic
and large-scale real or generated data, we have found that CIID could be a fea-
sible substitute for FID, which is currently the primary metric for evaluating
deep generative models [20].

This paper does not attempt to address all potential issues, but rather takes
a first step toward improving the evaluation of deep generative models by mea-
suring distributional discrepancy. We believe that the results obtained will have
an impact on further studies in related fields, particularly in deepfake detection,
which has become increasingly popular due to the development of generative
models. Any improvement in generative modeling makes it harder to distinguish
between what is real and what is fake. Therefore, it is crucial to evaluate gener-
ative models efficiently to reduce potential risks [6].

2 Related Work

Various measures that quantify differences between distributions have been de-
fined in the literature. These include measures based on information theory,
optimal transport theory, and kernel theory. In the following paragraphs, we
briefly present our selection of the most significant examples with applications
in evaluating deep generative models. For a comprehensive analysis and discus-
sion of alternative methods, including adjustments and enhancements to those
outlined in this section, refer to [5, 6].

Discrepancy Measures Based on the Information Theory In general, measures
based on information theory rely on entropy H(·) and/or cross-entropy H(·, ·).
The Log-Likelihood (or Evidence) [12, 33] is calculated using the following for-
mula:

LL = Ex∼pX log pG(x) = −H(pX ), (1)

where pX represents the real data distribution and pG represents the model
distribution induced on data space X by the generator network G (i.e., the
1 Since our method relies on transferring distributions of real and fake data into the
inception (feature) space, we only consider feature-based approaches such as FID.
For the same reason, we do not discuss other concepts such as Precision and Recall.
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distribution of fake data). As likelihood in higher dimensions is intractable, gen-
erated data are often used to approximate pG(x). This requires the application
of suitable estimation techniques, such as the Parzen window approach [33] or
the reparametrization trick in VAE [27]. The Log-Likelihood can be considered
a universal measure for the training and evaluation of deep generative mod-
els [35]. However, due to its low sample efficiency, reliable direct calculation
requires large sample sizes. Therefore, for training purposes, it is often substi-
tuted with its lower bound, such as the Evidence Lower Bound (ELBO) in VAE,
which allows for working with small batches. Furthermore, according to [33], this
measure is generally uninformative about the quality of samples. This is because
there are known models that produce great samples despite having a poor (low)
Log-Likelihood, or vice versa.

The Inception Score [28] is commonly used to evaluate generated images. It
can also be useful for training deep generative models, as demonstrated in [29],
where a closely related objective for training Category-Aware Generative Adver-
sarial Networks (CatGANs) was proposed. However, to obtain reliable results, it
is necessary to evaluate the score on a large number of samples, at least 50k [28].
To calculate the Inception Score, we require the Inception v3 Network [30], which
is pre-trained on the ImageNet dataset [8] to capture the desired features of the
generated data. The Inception Score is calculated using the following formula:

IS = exp(Ex∼pGKL(pL(·|x)||pL) = exp(H(pL)− Ex∼pGH(·|x)). (2)

Here, KL(·||·) represents the Kullback-Leibler divergence, while pL(·|x) repre-
sents the label (feature) distribution on the inception (feature) space conditioned
on x ∈ X (so pL is respective marginal label distribution). The Inception Score
has been found to be reasonably correlated with the quality and diversity of
generated images, as well as with human judgment [28]. However, it should be
noted that the Inception Score does not take into account real data, which may
result in models receiving better (higher) scores simply for producing sharp and
diverse images, rather than those that follow the underlying distribution [40].
For a more detailed analysis, see [2].

Discrepancy Measures Based on the Optimal Transport Theory The Optimal
Transport Distance determines the most cost-effective way to transport one
probability measure into another. This is expressed by the following formula
(see, e.g., [38]):

Wc(p, q) = inf
γ∈Γ(p,q)

∫
Rk×Rk

c(x, y) dγ(x, y), (3)

where Γ(p, q) is the family of joint probability distributions (known as cou-
plings) having p and q as marginals, and c(·, ·) is a given transportation cost
function. The state-of-the-art deep generative models, Wasserstein GAN [1] and
Wasserstein Autoencoder (WAE) [34], aim to minimize the Wasserstein Distance
between pX and pG, using either l21 (for WGAN) or l22 (for WAE) as the trans-
portation cost function. However, it is important to note that computing directly
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from Eq. (3) is difficult or even impossible. Therefore, WGAN adheres to the
Kantorovich-Rubinstein duality [38] and minimizes a lower bound for Wl21

. Sim-
ilarly, WAE utilizes Theorem 1 from [34] to create an objective function that
comprises a reconstruction error term on X and an appropriate regularization
term on the latent.

As demonstrated above, utilizing the Optimal Transport Distance directly
in data space is not feasible due to its intractability in high dimensions. This
limitation also applies to the evaluation of models. In this case, however, the
Fréchet Inception Distance (FID) [14] can be used. FID is computed as the
Wasserstein Distance Wl22

between the data and model distributions, which are
first transported into feature space by the Inception v3 network pre-trained on
the ImageNet dataset, and then approximated by the nearest multidimensional
Gaussians. While FID has become a standard for evaluating deep generative
models trained on image datasets, it has some significant weaknesses. For exam-
ple, it may overestimate “strange-looking” samples generated by well-optimized
objectives (see, e.g., the figures in [16, Appendix E]). A biased estimator of FID
that requires large samples makes it essentially unfeasible in the training process.
The imposed Gaussian structure raises reasonable doubts about the reliability
of this measure. Therefore, it is justifiable to search for improvements [4].

Discrepancy Measures Based on the Kernel Theory A kernel-based measure used
to compare two probability distributions is the Maximum Mean Discrepancy
(MMD) [24]. For a fixed characteristic kernel function k, it is defined as:

MMDk(p, q) = Ex,x′∼p k(x, x′)− 2Ex∼p,y∼q k(x, y) + Ey,y′∼q k(y, y′). (4)

Because MMD has an unbiased estimator [13], even when used in data space,
it has a low sample complexity. This makes it suitable for training models, in-
cluding generative autoencoders (e.g., MMD-VAE [41]) and GANs (e.g., MMD
Net [9]). Additionally, it performs well in a feature space [4, 40]. As an example,
the Kernel Inception Distance (KID) is provided [4]. KID uses the polynomial
characteristic kernel function and the Inception v3 Network, which is pre-trained
on the ImageNet dataset. According to the experimental results presented in [4],
KID can be considered a computationally efficient evaluation measure that does
not require a Gaussian structure of feature distributions, unlike FID. However,
both FID and KID do not differentiate between distributions with the same
first three moments (refer to Fig. 2 and [36, Fig. 1]), which indicates room for
improvement.

3 Interpoint Inception Distance

This section introduces the Interpoint Inception Distance (IID), a feature-based
method for evaluating deep generative models. The approach aims to reduce
the measurement of discrepancy between multidimensional distributions to one-
dimensional interpoint comparisons [23]. The statement is general, allowing for
the derivation of a broad range of evaluation measures. We present an instance of
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Fig. 2. Example of distributions with identical first three moments (see Section 4),
resulting in FID and KID scores close to zero [26, 36].

the Cramér Interpoint Inception Distance (CIID), which has desirable theoretical
properties, making it a suitable candidate for an effective evaluation metric.

General Statement Our approach is based on the following theorem, which is a
rewrite of Theorem 1 and Remark 4 in [23].

Theorem 1. Let X1, X2, X3 and Y1, Y2, Y3 be independent copies of two inde-
pendent k-dimensional random variables X and Y , respectively. Let h be any
real-valued nonnegative function2 such that h(x, y) = 0 if and only if x = y.
Then the following conditions are equivalent:

(i) X and Y follow the same (k-dimensional) distribution,
(ii) h(X1, X2), h(Y1, Y2), and h(X3, Y3) follow the same (univariate) distribu-

tion,
(iii) h(X1, X2), h(Y1, Y2), and h(X1, Y1) follow the same (univariate) distribu-

tion.

Using Theorem 1, we define the Interpoint Distance (ID) with the following
formula:

ID(X,Y ) = d(h(X1, X2), h(Y1, Y2)) + d(h(X1, X2), h(X1, Y1))
+ d(h(Y1, Y2), h(X1, Y1)),

(5)

where d is an arbitrary one-dimensional statistical distance. Then, applying
Eq. (5) to random variables representing features of real and fake data3 yields
a general evaluation measure called the Interpoint Inception Distance (IID). In
this case, the function h measures discrepancies between the features of points
2 Although it is not necessary for h to be symmetric, it can be interpreted as a type
of semi-metric [39] on Rk.

3 This means that X and Y represent outputs of the Inception v3 Network, which was
pre-trained on the ImageNet dataset.
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drawn from the real data distribution or the model distribution. In practice,
we use the distance induced by the k-dimensional Euclidean norm ‖ · ‖, i.e.,
h(x, y) = ‖x−y‖ for x, y ∈ Rk. In the following paragraph, we discuss a possible
choice for d that leads to a special case of IID of particular interest.

Cramér Interpoint Inception Distance (CIID) Our proposal is to use the Cramér
Distance [31, 32] as d in the IID formula. The p-th Cramér Distance is defined
by the following formula:

Cp(S, T ) =

∫ ∞
−∞
|FS(t)− FT (t)|p dt, (6)

where FS and FT represent the cumulative distribution functions (CDFs) for one-
dimensional random variables S and T . This yields the p-th Cramér Interpoint
Inception Distance (CIIDp).

The use of the CIIDp evaluation measure involves the application of an ap-
propriate estimator, as described in the following paragraph, along with the
corresponding theoretical analysis.

Estimation of CIID Random variables X and Y θ (for θ ∈ Θ, where Θ is an open
subset of the model’s parameter space) are taken on the k-dimensional inception
space to represent features of real data (following the data distribution pX )
and fake data (following the model distribution pθG), respectively. Sequences of
independent copies of X and Y θ are considered, namely

X1,n = (X1,1, . . . , X1,n), X2,n = (X2,1, . . . , X2,n), (7)

and
Yθ1,n = (Y θ1,1, . . . , Y

θ
1,n), Yθ2,n = (Y θ2,1, . . . , Y

θ
2,n) (8)

(these are interpreted as respective batch samples). The p-th Cramér Interpoint
Inception Distance can be estimated using the following formula:

ĈIIDp
n(X,Y θ) = Cp(F‖X1,n−X2,n‖, F‖Yθ1,n−Yθ2,n‖) + Cp(F‖X1,n−X2,n‖, F‖X1,n−Yθ1,n‖)

+ Cp(F‖Yθ1,n−Yθ2,n‖, F‖X1,n−Yθ1,n‖),

(9)
where

F‖X1,n−X2,n‖(t) =
1

n

n∑
i=1

I(−∞,t](‖X1,i −X2,i‖), (10)

F‖X1,n−Yθ1,n‖(t) =
1

n

n∑
i=1

I(−∞,t](‖X1,i − Y θ1,i‖), (11)

and

F‖Yθ1,n−Yθ2,n‖(t) =
1

n

n∑
i=1

I(−∞,t](‖Y θ1,i − Y θ2,i‖) (12)
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are corresponding empirical cumulative distribution functions (ECDFs). (Here,
I denotes a set characteristic function.)

Regarding ĈIIDp
n, our main findings are that it is a strongly consistent es-

timator and possesses unbiased gradients for p = 2, as stated in the following
theorem.

Theorem 2. The Cramér Interpoint Inception Distance estimator defined in
Eq. (9) satisfies the following conditions:

ĈIIDp
n(X,Y θ)→ CIIDp(X,Y θ) if n→∞ (13)

and
E(∇θĈIID2

n(X,Y θ)) = ∇θCIID2(X,Y θ). (14)

The proof of Theorem 2 follows directly from the lemma below.

Lemma 1. Let Sn = (S1, . . . , Sn) and Tθn = (T θ1 , . . . , T
θ
n) be sequences of in-

dependent copies of one-dimensional random variables S and T θ, respectively.
Then:

C2(FSn , FTθn
)→ C2(FS , FT θ ) if n→∞ (15)

and
E(∇θC2(FSn , FTθn

)) = ∇θC2(FS , FT θ ). (16)

Eq. (15) can be derived from the Glivenko-Cantelli Theorem [10] and the Lebesgue
Convergence Theorem [11]. To prove Eq. (16), refer to [3].

4 Experiments

This section presents the experimental study that compares our proposed evalua-
tion measure (CIID) with FID. We start by conducting experiments on synthetic
data before transitioning to the case of large-scale real or generated data. The
source code is available at https://github.com/djajesniak/CIID.

Experiments on Synthetic Data Let us consider two-dimensional distributions
p ∼ N2(0, I2) and qm = q1

m × q2
m for m ∈ [0, 1], where q1

m and q2
m are one-

dimensional distributions both given by the density function

fm(x) =
1

2
f−m,

√
1−m2(x) +

1

2
fm,
√

1−m2(x) (17)

(here fm,s is a density function of the Gaussian N(m, s)). Then the first three
moments of p and qm are equal and p = q0. Fig. 3 presents estimated FID and
CID4 values (calculated with different sample sizes) between p and q0.95 and
between p and p. It is clear that FID does not distinguish between p and q0.95,
while CID does (note that CID1 is even sensitive to differences resulting from
sample-based estimation). On the other hand, from Fig. 4 we learn that FID
does not indicate the difference between p and qm for any m ∈ [0, 1], while CID
does (but CID2 starts to discriminate at m ≈ 0.6).
4 The Cramér Interpoint Distance (CID) is derived by using the Cramér Distance in
the ID formula, instead of the IID formula as in the case of CIID.
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Fig. 3. Estimated FID and CID values (calculated using samples of different sizes)
between the two-dimensional distributions p and q0.95 (top) or p and p (bottom) that
have the same first three moments.
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Fig. 4. Estimated FID and CID values on a logarithmic scale (calculated with a sample
size of 10000) between the two-dimensional distributions p and qm with the same first
three moments.

Sensitivity to Implemented Disturbances We performed experiments inspired by
those initially performed in [14] and then continued in [4]. We applied several
different disturbances (i.e., “salt and pepper”, Gaussian noise, black rectangles,
Gaussian blur, and elastic transform) to 8k-sized data samples from the CelebA
[22] and ImageNet [8] datasets, to examine resilience to the noise of CIID com-
pared to FID. Figures 5, 6, 7, 8, and 9 present our experimental results. Each
score was scaled to [0, 1] to be plotted on one vertical axis. Generally, CIID be-
haved comparably to FID, but it seemed to better maintain small disturbances,
as shown in Fig. 9, where the FID score for null disturbance is positive, which

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_19

https://dx.doi.org/10.1007/978-3-031-63749-0_19
https://dx.doi.org/10.1007/978-3-031-63749-0_19


10 D. Jajeśniak et al.

may be attributed to the curse of dimensionality and the strong bias of its esti-
mator.
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Fig. 5. Salt and pepper. The x-axis represents the percentage of pixels changed to black
or white. On the y-axis is the current value of the metric divided by its maximum value.
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Fig. 6. Gaussian noise. The x-axis represents one-third of the standard deviation of
the noise. On the y-axis is the current value of the metric divided by its maximum
value.

Impact of Suboptimal Weights We conducted an empirical investigation employ-
ing a DCGAN [25] architecture trained on the CelebA dataset, to evaluate the
effectiveness of CIID compared to FID throughout the network’s training phase.
We scrutinized the evaluation measures performance under suboptimal model
weights. We run a training procedure 5 times computing evaluation scores on
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Fig. 7. Black rectangles. The x-axis represents the number of small black rectangles
randomly added to the image. On the y-axis is the current value of the metric divided
by its maximum value.
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Fig. 8. Gaussian blur. The x-axis represents the strength of the disturbance. Kernel
size is equal to (3x, 3x) and sigma parameter to (x, x). On the y-axis is the current
value of the metric divided by its maximum value.

8k-sized samples every 1000 batches and then taking the average. The mean
values are presented in Fig. 10 (for generated samples refer to Fig. 11). Dur-
ing training, a similar behavior of FID and CIID was observed. Notably, CIID
demonstrated a faster descent, reaching lower relative values5 in comparison to
FID.

Variability During the experiments, it was observed that CIID has lower vari-
ability than FID. To test it, we computed the CIID and FID ten times between
samples from the CelebA dataset and sets of entirely black images (represented

5 Compared to their values at epoch 0, which are maximal because they are represented
as metric values between the original data samples and pure Gaussian noise.
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Fig. 9. Elastic transform. The x-axis represents the strength of the disturbance. The
alpha parameter is equal to 10x. On the y-axis is the current value of the metric divided
by its maximum value.
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Fig. 10. Scaled values of the metrics during DCGAN training (averaged over 5 runs).
The x-axis represents subsequent epochs and the y-axis denotes the current metric
value divided by its maximum value.

by tensors containing only zeros). The coefficient of variation for each evalua-
tion measure was then computed. The results showed a coefficient of variation of
0.00135 for FID, 0.00066 for CIID1, and 0.00055 for CIID2. This demonstrates
that our proposed metrics have roughly half the variability of FID.

5 Conclusions

In this paper, the Interpoint Inception Distance (IID) is introduced as a new
method for the evaluation of deep generative models. It is shown that one of its
instances, the Cramér Interpoint Inception Distance (CIID), exhibits remarkable
theoretical properties, such as a non-Gaussian feature distribution structure and
an estimator that yields unbiased gradients and is strongly consistent. Experi-
ments on synthetic and large-scale real or generated data suggest that CIID is a
promising competitor to FID, distinguishing well between distributions with the
same first three moments, having lower variability, and appearing more objective
to small differences.
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Fig. 11. Examples of images generated after 1 epoch (left) and after 12 epochs (right)
by DCGAN trained on the CelebA dataset.

Limitations and Future Directions Thus far, our solution has been validated on
a limited number of experimental setups that only involve image data. How-
ever, we believe that it could also prove useful in the context of text or signal
data. Moreover, we have not yet explored the use of CIID to account for sample
novelty. This is a recent concept introduced in [15], which incorporates vulner-
ability to overfitting. On the other hand, the existence of an unbiased gradient
estimator permits the justification of potential applications of our proposed mea-
sure in training processes. The aforementioned factors will serve to guide future
directions of our research.
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