
Fast and Layout-Oblivious
Tensor-Matrix Multiplication with BLAS

Cem Savaş Başsoy

Hamburg University of Technology, Schwarzenbergstrasse 95, Germany,
cem.bassoy@gmail.com

Abstract. The tensor-matrix multiplication is a basic tensor operation
required by various tensor methods such as the ALS and the HOSVD.
This paper presents flexible high-performance algorithms that compute
the tensor-matrix product according to the Loops-over-GEMM (LoG)
approach. Our algorithms can process dense tensors with any linear ten-
sor layout, arbitrary tensor order and dimensions all of which can be
runtime variable. We discuss different tensor slicing methods with par-
allelization strategies and propose six algorithm versions that call BLAS
with subtensors or tensor slices. Their performance is quantified on a set
of tensors with various shapes and tensor orders. Our best performing
version attains a median performance of 1.37 double precision Tflops on
an Intel Xeon Gold 6248R processor using Intel’s MKL. We show that the
tensor layout does not affect the performance significantly. Our fastest
implementation is on average at least 14.05% and up to 3.79x faster
than other state-of-the-art approaches and actively developed libraries
like Libtorch and Eigen.

Keywords: Tensor computation · Tensor contraction · Tensor-matrix
multiplication · High-performance computing

1 Introduction

Tensor computations are found in many scientific fields such as computational
neuroscience, pattern recognition, signal processing and data mining [6, 14].
These computations use basic tensor operations as building blocks for decompos-
ing and analyzing multidimensional data which are represented by tensors [7,9].
Tensor contractions are an important subset of basic operations that need to be
fast for efficiently solving tensor methods.

There are three main approaches for implementing tensor contractions. The
Transpose-Transpose-GEMM-Transpose (TGGT) approach reorganizes (flattens)
tensors in order to perform a tensor contraction using optimized General Ma-
trix Multiplication (GEMM) implementations [1, 18]. Implementations of the
GEMM-like Tensor-Tensor multiplication (GETT) method have macro-kernels
that are similar to the ones used in fast GEMM implementations [12, 19]. The
third method is the Loops-over-GEMM (LoG) approach in which BLAS are uti-
lized with multiple tensor slices or subtensors if possible [2,10,13,17]. Implemen-
tations of the LoG and TTGT approaches are in general easier to maintain and

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

faster to port than GETT implementations which might need to adapt vector
instructions or blocking parameters according to a processor’s microarchitecture.

In this work, we present high-performance algorithms for the tensor-matrix
multiplication which is used in many numerical methods such as the alternating
least squares method [7,9]. It is a compute-bound tensor operation and has the
same arithmetic intensity as a matrix-matrix multiplication which can almost
reach the practical peak performance of a computing machine.

To our best knowledge, we are the first to combine the LoG approach de-
scribed in [2, 16] for tensor-vector multiplications with the findings on tensor
slicing for the tensor-matrix multiplication in [10]. Our algorithms support dense
tensors with any order, dimensions and any linear tensor layout including the
first- and the last-order storage formats for any contraction mode all of which can
be runtime variable. They compute the tensor-matrix product in parallel using
efficient GEMM or batched GEMM without transposing or flattening tensors.
Despite their high performance, all algorithms are layout-oblivious and provide
a sustained performance independent of the tensor layout and without tuning.

Moreover, every proposed algorithm can be implemented with less than 150
lines of C++ code where the algorithmic complexity is reduced by the BLAS
implementation and the corresponding selection of subtensors or tensor slices.
We have provided an open-source C++ implementation of all algorithms and a
python interface for convenience. While Intel’s MKL is used for our benchmarks,
the user is free to select any other library that provides the BLAS interface and
even integrate it’s own implementation to be library independent.

The analysis in this work quantifies the impact of the tensor layout, the
tensor slicing method and parallel execution of slice-matrix multiplications with
varying contraction modes. The runtime measurements of our implementations
are compared with state-of-the-art approaches discussed in [12,15,19] including
Libtorch and Eigen. In summary, the main findings of our work are:

– A tensor-matrix multiplication can be implemented by an in-place algorithm
with 1 GEMV and 7 GEMM calls, supporting all combinations of contraction
mode, tensor order and dimensions for any linear tensor layout.

– Our fastest algorithm with tensor slices is on average 17% faster than Intel’s
batched GEMM implementation when the contraction and leading dimen-
sions of the tensors are greater than 256.

– The proposed algorithms are layout-oblivious. Their performance does not
vary significantly for different tensor layouts if the contraction conditions
remain the same.

– Our fastest algorithm computes the tensor-matrix multiplication on average,
by at least 14.05% and up to a factor of 3.79 faster than other state-of-the
art library implementations, including LibTorch and Eigen.

The remainder of the paper is organized as follows. Section 2 presents related
work. Section 3 introduces some notation on tensors and defines the tensor-
matrix multiplication. Algorithm design and methods for slicing and parallel
execution are discussed in Section 4. Section 5 describes the test setup. Bench-
mark results are presented in Section 6. Conclusions are drawn in Section 7.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

2 Related Work

Springer et al. [19] present a tensor-contraction generator TCCG and the GETT
approach for dense tensor contractions that is inspired from the design of a high-
performance GEMM. Their unified code generator selects implementations from
generated GETT, LoG and TTGT candidates. Their findings show that among
48 different contractions 15% of LoG-based implementations are the fastest.

Matthews [12] presents a runtime flexible tensor contraction library that uses
GETT approach as well. He describes block-scatter-matrix algorithm which uses
a special layout for the tensor contraction. The proposed algorithm yields results
that feature a similar runtime behavior to those presented in [19].

Li et al. [10] introduce InTensLi, a framework that generates in-place tensor-
matrix multiplication according to the LOG approach. The authors discusses
optimization and tuning techniques for slicing and parallelizing the operation.
With optimized tuning parameters, they report a speedup of up to 4x over the
TTGT-based MATLAB tensor toolbox library discussed in [1].

Başsoy [2] presents LoG-based algorithms that compute the tensor-vector
product. They support dense tensors with linear tensor layouts, arbitrary di-
mensions and tensor order. The presented approach is to divide into eight cases
calling GEMV and DOT. He reports average speedups of 6.1x and 4.0x compared
to implementations that use the TTGT and GETT approach, respectively.

Pawlowski et al. [16] propose morton-ordered blocked layout for a mode-
oblivious performance of the tensor-vector multiplication. Their algorithm iter-
ate over blocked tensors and perform tensor-vector multiplications on blocked
tensors. They are able to achieve high performance and mode-oblivious compu-
tations.

3 Background

Notation An order-p tensor is a p-dimensional array [11] where tensor elements
are contiguously stored in memory. We write a, a, A and A in order to denote
scalars, vectors, matrices and tensors. If not otherwise mentioned, we assume
A to have order p > 2. The p-tuple n = (n1, n2, . . . , np) will be referred to as
a dimension tuple with nr > 1. We will use round brackets A(i1, i2, . . . , ip) or
A(i) to denote a tensor element where i = (i1, i2, . . . , ip) is a multi-index. A
subtensor is denoted by A′ and references elements of a tensor A. They are
specified by a selection grid consisting of p index ranges. The index range in this
work shall either address all indices of a given mode or a by a single index ir

with 1 ≤ r ≤ p. Elements n′
r of a subtensor’s dimension tuple n′ are n′

r = nr if
all indices of mode r are selected or n′

r = 1. We will annotate subtensors using
only their non-unit modes such as A′

u,v,w where nu > 1,nv > 1 and nw > 1 and
1 ≤ u ̸= v ̸= w ≤ p. The remaining single indices of a selection grid correspond
to the loop induction variables. A subtensor is called a slice A′

u,v if only two
modes of A is selected with a full range. A fiber A′

u is a tensor slice with only
one dimension greater than 1.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

Linear Tensor Layouts We use a layout tuple π ∈ Np to encode all linear ten-
sor layouts including the first-order or last-order layout. They contain permuted
tensor modes whose priority is given by their index. For instance, the general
k-order tensor layout for an order-p tensor is given by the layout tuple π with
πr = k−r+1 for 1 < r ≤ k and r for k < r ≤ p. The first- and last-order storage
formats are given by πF = (1, 2, . . . , p) and πL = (p, p−1, . . . , 1). An inverse lay-
out tuple π−1 is defined by π−1(π(k)) = k. Given a layout tuple π with p modes,
the πr-th element of a stride tuple is given by wπr

=
∏r−1

k=1 nπk
for 1 < r ≤ p and

wπ1 = 1. Tensor elements of the π1-th mode are contiguously stored in memory.
The location of tensor elements is determined by the tensor layout and the lay-
out function. For a given tensor layout and stride tuple, a layout function λw
maps a multi-index to a scalar index with λw(i) =

∑p
r=1 wr(ir − 1), see [3,16].

Non-Modifying Flattening and Reshaping The flattening operation φr,q

transforms an order-p tensor A to another order-p′ view B that has different
a shape m and layout τ tuple of length p′ with p′ = p − q + r and 1 ≤ r <
q ≤ p. It is related to the tensor unfolding operation as defined in [7, p.459]
but neither changes the element ordering nor copies tensor elements. Given
a layout tuple π of A, the flattening operation φr,q is defined for contigu-
ous modes π̂ = (πr, πr+1, . . . , πq) of π. Let j = 0 if k ≤ r and j = q − r
otherwise for 1 ≤ k ≤ p′. Then the resulting layout tuple τ = (τ1, . . . , τp′)
of B is given by τr = min(πr,q) and τk = πk+j − sk if k ̸= r where sk =
|{πi | πk+j > πi ∧ πi ̸= min(π̂) ∧ r ≤ i ≤ p}|. Elements of the shape tuple m are
defined by mτr

=
∏q

k=r nπk
and mτk

= nπk+j
if k ̸= r. Reshaping ρ transforms

an order-p tensor A to another order-p tensor B with the shape tuple m and
layout tuple τ tuples, both of length p. In this work, it permutes the shape and
layout tuple simultaneously without changing the element ordering and with-
out copying tensor elements. The operation ρ is defined by a permutation tuple
ρ = (ρ1, . . . , ρp) that defines elements of m and τ with mr = nρr

and τr = πρr
,

respectively.

Tensor-Matrix Multiplication Let A and C be order-p tensors with shapes
na = (n1, . . . , nq, . . . , np) and nc = (n1, . . . , nq−1, m, nq+1, . . . , np). Let B be a
matrix of shape nb = (m, nq). A mode-q tensor-matrix product is denoted by
C = A ×q B. An element of C is defined by

C(i1, . . . , iq−1, j, iq+1, . . . , ip) =
nq∑

iq=1
A(i1, . . . , iq, . . . , ip) · B(j, iq) (1)

with 1 ≤ ir ≤ nr and 1 ≤ j ≤ m [7, 10]. Mode q is called the contraction mode
with 1 ≤ q ≤ p. The tensor-matrix multiplication generalizes the computational
aspect of the two-dimensional case C = B · A if p = 2 and q = 1. Its arithmetic
intensity is equal to that of a matrix-matrix multiplication and is not memory-
bound. In the following, we assume that the tensors A and C have the same
tensor layout π. Elements of matrix B can be stored either in the column-major

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

or row-major format. Without loss of generality, we assume B to have the row-
major storage format. Also note that the following approach can be applied, if
indices j and iq of matrix B are swapped.

4 Algorithm Design

4.1 Baseline Algorithm with Contiguous Memory Access

Eq. 1 can be implemented with one sequential C++ function which consists of
a nested recursion which is described in [3]. The algorithm consists of two if
statements with an else branch that computes a fiber-matrix product with two
loops. The outer loop iterates with j over dimension m of C and B. The inner
loop iterates with iq over dimension nq of A and B, computing an inner product.
However, elements of A and C are accessed non-contiguously if π1 ̸= q. Matrix
B is contiguously accessed if iq or j is incremented with unit-strides depending
on the storage format of B.

The above algorithm can be modified such that tensor elements are accessed
according to the tensor layout that is specified by layout tuple π. The resulting
baseline algorithm is given in Algorithm 1 which contiguously accesses mem-
ory for π1 ̸= q and p > 1. In line number 5, one multi-index element iπr

is
incremented with a stride wπr

. With increasing recursion level and decreasing
r, indices are incremented with smaller strides as wπr

≤ wπr+1 . The second
if statement in line number 4 allows the loop over dimension π1 to be placed
into the base case which contains three loops performing a slice-matrix multi-
plication. The inner-most loop increments iπ1 and contiguously accesses tensor
elements of A and C. The second loop increments iq with which elements of
B are contiguously accessed if B is stored in the row-major format. The third
loop increments j and could be placed as the second loop if B is stored in the
column-major format.

While spatial data locality is improved by adjusting the loop ordering, slices
A′

π1,q, fibers C′
π1

and elements B(j, iq) are accessed m, nq and nπ1 times, re-
spectively. While the specified fiber of C can fit into first or second level cache,
slice elements of A are unlikely to fit in the local caches if the slice size nπ1 × nq

is large leading to higher cache misses and suboptimal performance. Instead of
optimizing for better temporal data locality, we use existing high-performance
BLAS implementations for the base case.

4.2 BLAS-based Algorithms with Tensor Slices

Algorithm 1 is the starting point for BLAS-based algorithms. It computes the
mode-q tensor-matrix product by recursively multiplying tensor slices with the
matrix for q ̸= π1. Instead of optimizing the multiplication, it is possible to
insert a gemm routine in the base case and to compute slice-matrix products.
Additionally, there are seven other (corner) cases where a single gemv or gemm
call suffices. All eight cases are listed in table 1. The arguments of gemv or gemm

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

1 tensor_times_matrix(A, B, C, n, i, m, q, q̂, r)
2 if r = q̂ then
3 tensor_times_matrix(A, B, C, n, i, m, q, q̂, r − 1)
4 else if r > 1 then
5 for iπr ← 1 to nπr do
6 tensor_times_matrix(A, B, C, n, i, m, q, q̂, r − 1)

7 else
8 for j ← 1 to m do
9 for iq ← 1 to nq do

10 for iπ1 ← 1 to nπ1 do
11 C(i1, ..., iq−1, j, iq+1, ..., ip) += A(i1, ..., iq, ..., ip) ·B(j, iq)

Algorithm 1: Modified baseline algorithm with contiguous memory access for the
tensor-matrix multiplication. The tensor order p must be greater than 1 and the
contraction mode q must satisfy 1 ≤ q ≤ p and π1 ̸= q. The initial call must happen
with r = p where n is the shape tuple of A and m is the q-th dimension of C.

are chosen depending on the tensor order p, tensor layout π and contraction
mode q except for parameter CBLAS_ORDER which is set to CblasRowMajor. The
CblasColMajor format can be used as well if the following case descriptions are
changed accordingly. The parameter arguments are given in our C++ library. Note
that with table 1 all linear tensor layout are supported with no limitations on
tensor order and contraction mode.

Case 1: If p = 1, The tensor-vector product A ×1 B can be computed with
a gemv operation where A is an order-1 tensor a of length n1 such that aT · B.

Case 2-5: If p = 2, A and C are order-2 tensors with dimensions n1 and n2.
In this case the tensor-matrix product can be computed with a single gemm. If
A and C have the column-major format with π = (1, 2), gemm either executes
C = A · BT for q = 1 or C = B · A for q = 2. Reshaping both matrices using
ρ with ρ = (2, 1), gemm interprets C and A as matrices in row-major format
although both are stored column-wise. If A and C have the row-major format
with π = (2, 1), gemm either executes C = B·A for q = 1 or C = A·BT for q = 2.
The transposition of B is necessary for the cases 2 and 5 which is independent
of the chosen layout.

Case 6-7 : If p > 2 and if q = π1(case 6), a single gemm with the corresponding
arguments executes C = A · BT and computes a tensor-matrix product C =
A×π1 B. Tensors A and C are flattened with φ2,p to row-major matrices A and
C. Matrix A has n̄π1 = n̄/nπ1 rows and nπ1 columns while matrix C has the
same number of rows and m columns. If πp = q (case 7), A and C are flattened
with φ1,p−1 to column-major matrices A and C. Matrix A has nπp

rows and
n̄πp

= n̄/nπp
columns while C has m rows and the same number of columns.

In this case, a single gemm executes C = B · A and computes C = A ×πp
B.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

Case Order p Layout π Mode q Routine T M N K A LDA B LDB LDC

1 1 - 1 gemv - m n1 - B n1 A - -

2 2 (1, 2) 1 gemm B n2 m n1 A n1 B n1 m
3 2 (1, 2) 2 gemm - m n1 n2 B n2 A n1 n1
4 2 (2, 1) 1 gemm - m n2 n1 B n1 A n2 n2
5 2 (2, 1) 2 gemm B n1 m n2 A n2 B n2 m

6 > 2 any π1 gemm B n̄q m nq A nq B nq m
7 > 2 any πp gemm - m n̄q nq B nq A n̄q n̄q

8 > 2 any π2, .., πp−1 gemm* - m nπ1 nq B nq A wq wq

Table 1. Eight cases with gemv and gemm for the mode-q tensor-matrix multiplication.
Arguments T, M, N, etc. of the BLAS are chosen with respect to the tensor order p,
layout π and contraction mode q where T specifies if B is transposed. gemm* denotes
multiple gemm calls with different tensor slices. Argument n̄q for case 6 and 7 is given
by n̄q = 1/nq

∏p

r
nr. Matrix B has the row-major format.

Noticeably, the desired contraction are performed without copy operations, see
subsection 3.

Case 8 (p > 2): If the tensor order is greater than 2 with π1 ̸= q and πp ̸= q,
the modified baseline algorithm 1 is used to successively call n̄/(nq · nπ1) times
gemm with different tensor slices of C and A. Each gemm computes one slice C′

π1,q

of the tensor-matrix product C using the corresponding tensor slices A′
π1,q and

the matrix B. The matrix-matrix product C = B·A is performed by interpreting
both tensor slices as row-major matrices A and C which have the dimensions
(nq, nπ1) and (m, nπ1), respectively. Please note that Algorithm 2 in [10] suggests
to transpose matrix B.

4.3 BLAS-Based Algorithms with Subtensors

The eighth case can be further optimized by slicing larger subtensors and use ad-
ditional dimensions for the slice-matrix multiplication. The selected dimensions
must adhere to flatten the subtensor into a matrix without reordering or copy-
ing elements, see lemma 4.1 in [10]. The number of additional modes is q̂ − 1
with q̂ = π−1(q) and the corresponding modes are π1, π2, . . . , πq̂−1. Applying
flattening φ1,q̂−1 and reshaping ρ with ρ = (2, 1) on a subtensor of A yields a
row-major matrix A with shape (nq,

∏q̂−1
r=1 nπr). Analogously, tensor C becomes

a row-major matrix with the shape (m,
∏q̂−1

r=1 nπr
). This description supports all

linear tensor layouts and generalizes lemma 4.2 in [10].
Algorithm 1 needs a minor modification so that gemm can be used with flat-

tened subtensors instead of tensor slices. The non-base case of the modified algo-
rithm only iterates over dimensions with indices that are larger than q̂, omitting
the first q̂ modes π1,q̂ = (π1, . . . , πq̂) with πq̂ = q. The conditions in line 2 and
4 are changed to 1 < r ≤ q̂ and q̂ < r, respectively. The single indices of the

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

subtensors A′
π1,q̂

and C′
π1,q̂

are given by the loop induction variables that belong
to the πr-th loop with q̂ + 1 ≤ r ≤ p.

4.4 Parallel BLAS-based Algorithms

Next, three parallel approaches for the eighth case. Note that cases 1 to 7 already
call a multi-threaded gemm.

Sequential Loops and Multithreaded Matrix Multiplication A simple
approach is to not modify algorithm 1 and sequentially call a multi-threaded gemm
in the base case as described in subsection 4.2. This is beneficial if q = πp−1,
the inner dimensions nπ1 , . . . , nq are large or if the outer-most dimension nπp

is
smaller than the available processor cores. However, when the above conditions
are not met, the algorithm executes multi-threaded gemm with small subtensors.
This might lead to a low utilization of available computational resources. This
algorithm version will be referred to as <seq-loops,par-gemm>.

Parallel Loops and Multithreaded Matrix Multiplication A more ad-
vanced version of the above algorithm executes a single-threaded gemm in parallel
with all available (free) modes. The number of free modes depends on the tensor
slicing. If subtensors are used, all πq̂+1, . . . , πp modes are free and can be used
for parallel execution. In case of tensor slices, only dimensions with indices π1
and πq̂ are free.

Using tensor slices for the multiplication, A and C are flattened twice with
φπq̂+1,πp

and φπ2,πq̂−1 . The flattened tensors are of order 4 with dimensions nπ1 ,
n̂π2 , nq or m, n̂π4 where n̂π2 =

∏q̂−1
r=2 nπr

and n̂π4 =
∏p

r=q̂+1 nπr
. This approach

transforms the tree-recursion into two loops. The outer loop iterates over n̂π4

while the inner loop iterates over n̂π2 calling gemm with slices A′
π1,q and C′

π1,q.
Both loops are parallelized using omp parallel for together with the collapse(2)
and the num_threads clause which specifies the thread number.

If subtensors are used, both tensors are flattened twice with φπq̂+1,πp
and

φπ1,πq̂−1 . The flattened tensors are of order 3 with dimensions n̂π1 , nq or m, n̂π4

where n̂π1 =
∏q̂−1

r=1 nπr
and n̂π4 =

∏p
r=q̂+1 nπr

. The corresponding algorithm
consists of one loops which iterates over n̂π4 calling single-threaded gemm with
multiple subtensors A′

π′,q and C′
π′,q with π′ = (π1, . . . , πq̂−1).

Both algorithm variants will be referred to as <par-loops,seq-gemm> which
can be used with subtensors or tensor slices. Note that <seq-loops,par-gemm> and
<par-loops,seq-gemm> are opposing versions where either gemm or the free loops
are performed in parallel. The all-parallel version <par-loops,par-gemm> executes
available loops in parallel where each loop thread executes a multi-threaded gemm
with either subtensors or tensor slices.

Multithreaded Batched Matrix Multiplication The next version of the
base algorithm is a modified version of the general subtensor-matrix approach

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

that calls a single batched gemm for the eighth case. The subtensor dimensions
and remaining gemm arguments remain the same. The library implementation is
responsible how subtensor-matrix multiplications are executed and if subtensors
are further divided into smaller subtensors or tensor slices. This version will be
referred to as the <gemm_batch> variant.

5 Experimental Setup

Computing System The experiments have been carried out on an Intel Xeon
Gold 6248R processor with a Cascade micro-architecture. The processor consists
of 24 cores operating at a base frequency of 3 GHz. With 24 cores and a peak
AVX-512 boost frequency of 2.5 GHz, the processor achieves a theoretical data
throughput of ca. 1.92 double precision Tflops. We measured a peak performance
of 1.78 double precision Tflops using the likwid performance tool.

We have used the GNU compiler v10.2 with the highest optimization level -O3
and -march=native, -pthread and -fopenmp. Loops within for the eighth case have
been parallelized using GCC’s OpenMP v4.5 implementation. We have used the
gemv and gemm implementation of the 2020.4 Intel MKL and its own threading
library mkl_intel_thread together with the threading runtime library libiomp5.

If not otherwise mentioned, both tensors A and C are stored according to
the first-order tensor layout. Matrix B has the row-major storage format.
Tensor Shapes We have used asymmetrically and symmetrically shaped ten-
sors in order to cover many use cases. The dimension tuples of both shape types
are organized within two three-dimensional arrays with which tensors are ini-
tialized. The dimension array for the first shape type contains 720 = 9 × 8 × 10
dimension tuples where the row number is the tensor order ranging from 2 to
10. For each tensor order, 8 tensor instances with increasing tensor size is gen-
erated. A special feature of this test set is that the contraction dimension and
the leading dimension are disproportionately large. The second set consists of
336 = 6 × 8 × 7 dimensions tuples where the tensor order ranges from 2 to 7 and
has 8 dimension tuples for each order. Each tensor dimension within the second
set is 212, 28, 26, 25, 24 and 23. A detailed explanation of the tensor shape setup
is given in [2, 3].

6 Results and Discussion

Slicing Methods The next paragraphs analyze the two proposed slicing meth-
ods and discuss runtime results of <par-loops,seq-gemm> and <gemm-batch> using
asymmetrically and symmetrically shaped tensors. Fig. 1 contains six contour
plots (performance maps) in which <par-loops,seq-gemm> either uses subtensors
or tensor slices and <gemm-batch> loops over subtensors only. Every performance
value within the maps represent a mean value that has been averaged over tensor
sizes for a tensor order1.
1 Note that Fig. 2 suggests that the contraction mode q can be greater than p which

is not possible. Our profiling program sets q = p in such cases.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

Fig. 1. Performance maps in double-precision Tflops of the proposed algorithms with
varying tensor orders p and contraction modes q. Tensors are asymmetrically shaped
on the top plots and symmetrically shaped on the bottom plots. In (a) and (d) function
<gemm_batch> is executed, in (b) and (e) <par-loops,seq-gemm> with tensor slices, in
(c) and (f) <par-loops,seq-gemm> with subtensors.

For asymmetrically shaped tensors, function <par-loops,seq-gemm> with ten-
sor slices performs on average 18% better than with subtensors and is on average
11% faster than Intel’s gemm_batch routine. It reaches almost 1.1 Tflops for non-
edge cases with q > 2 and p > 6. This suggests that the Intel’s implementation
does not divide subtensors into smaller blocks.

With symmetrically shaped tensors, <par-loops,seq-gemm> with tensor slices
and <gemm-batch> almost show the same runtime behavior, reaching 221.52 Gflops
and 236.21 Gflops, respectively. Moreover, the slicing method seems to have only
little affect on the performance of <par-loops,seq-gemm>. In contrast to the per-
formance maps with asymmetrically shaped tensors, all functions almost reach
the attainable peak performance of 1.7 Tflops when p = 2. This can by the fact
that both dimensions are equal or larger than 4096 enabling gemm to operate
under optimal conditions.

Parallelization Methods The contour plots in Fig. 1 contain performance
data of all cases except for 4 and 5, see Table 1. The effects of the presented slicing
and parallelization methods can be better understood if performance data of only
the eighth case is examined. Fig. 2 contains cumulative performance distributions
of all the proposed algorithms which are generated gemm or gemm_batch calls
within case 8. As the distribution is empirically computed, the probability y of
a point (x, y) on a distribution function corresponds to the number of test cases

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.25

0.5

0.75

1

Tflops

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

0 0.2 0.4 0.6 0.8

0

0.25

0.5

0.75

1

Tflops

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Fig. 2. Cumulative performance distributions of the proposed algorithms for the
eighth case. Each distribution line belongs to one algorithm: <gemm_batch> ,
<seq-loops,par-gemm> () and <par-loops,seq-gemm> () using tensor slices,
<seq-loops,par-gemm> () and <par-loops,seq-gemm> () using subtensors.
Tensors are asymmetrically (left plot) and symmetrically shaped (right plot).

of a particular algorithm that achieves x or less Tflops. For instance, function
<seq-loops,par-gemm> with subtensors computes the tensor-matrix product for
50% percent of the test cases with equal to or less than 0.6 Tflops in case
of asymmetrically shaped tensor. Consequently, distribution functions with an
exponential growth are favorable while logarithmic behavior is less desirable.
The test set cardinality for case 8 is 255 for asymmetrically shaped tensors and
91 for symmetrically ones.

In case of asymmetrically shaped tensors, <par-loops,seq-gemm> with tensor
slices performs best and outperforms <gemm_batch>. One unexpected finding is
that function <seq-loops,par-gemm> with any slicing strategy performs better
than <gemm_batch> when the tensor order p and contraction mode q satisfy 4 ≤
p ≤ 7 and 2 ≤ q ≤ 4, respectively. Functions executed with symmetrically
shaped tensors reach at most 743 Gflops for the eighth case which is less than
half of the attainable peak performance of 1.7 Tflops. This is expected as cases
2 and 3 are not considered. Functions <par-loops,seq-gemm> with subtensors
and <gemm_batch> have almost the same performance distribution outperforming
<seq-loops,par-gemm> for almost every test case. Function <par-loops,seq-gemm>
with tensor slices is on average almost as fast as with subtensors. However, if
the tensor order is greater than 3 and the tensor dimensions are less than 64, its
running time increases by almost a factor of 2.

These observations suggest to use <par-loops,seq-gemm> with tensor slices
for common cases in which the leading and contraction dimensions are larger
than 64 elements. Subtensors should only be used if the leading dimension nπ1

of Aπ1,q and Cπ1,q falls below 64. This strategy is different to the one presented
in [10] that maximizes the number of modes involved in the matrix multiply.
We have also observed no performance improvement if par-gemm was used with

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

1 2 3 4 5 6 70

0.1

0.2

k-order layout

T
Fl

op
s

1 2 3 4 5 6 70

0.1

0.2

k-order layout

T
Fl

op
s

Fig. 3. Box plots visualizing performance statics in double-precision Tflops of
<gemm_batch> (left) and <par-loops,seq-gemm> with subtensors (right). Box plot num-
ber k denotes the k-order tensor layout of symmetrically shaped tensors with order 7.

par-loops which is why their distribution functions are not shown in Fig. 2.
Moreover, in most cases the seq-loops implementations are independent of the
tensor shape slower than par-loops, even for smaller tensor slices.

Layout-Oblivious Algorithms Fig. 3 contains two subfigures visualizing per-
formance statics in double-precision Tflops of <gemm_batch> (left subfigure) and
<par-loops,seq-gemm> with subtensors (right subfigure). Each box plot with the
number k has been computed from benchmark data with symmetrically shaped
order-7 tensors with the k-order tensor layout. The 1-order and 7-order layout,
for instance, are the first- and last-order storage formats for the order-7 tensor
with πF = (1, 2, ..., 7) and πL = (7, 6, ..., 1). The definition of k-order tensor
layouts can be found in section 3.

The low performance of around 70 Gflops can be attributed to the fact that
the contraction dimension of subtensors of tensor slices of symmetrically shaped
order-7 tensors are 8 while the leading dimension is 8 or at most 48 for subtensors.
The relative standard deviation of <gemm_batch>’s and <par-loops,seq-gemm>’s
median values are 12.95% and 17.61%. Their respective interquartile range are
similar with a relative standard deviation of 22.25% and 15.23%.

The runtime results with different k-order tensor layouts show that the per-
formance of our proposed algorithms is not designed for a specific tensor layout.
Moreover, the performance stays within an acceptable range independent of the
tensor layout.

Comparison with other Approaches We have compared the best performing
algorithm with four libraries that implement the tensor-matrix multiplication.

Library tcl implements the TTGT approach with a high-perform tensor-
transpose library hptt which is discussed in [19]. tblis implements the GETT
approach that is akin to Blis’ algorithm design for the matrix multiplication [12].

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

0 0.2 0.4 0.6 0.8 1.0 1.2

0

0.25

0.5

0.75

1

Tflops/s

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

0 0.4 0.8 1.2 1.6

0

0.25

0.5

0.75

1

Tflops/s

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Fig. 4. Cumulative performance distributions of tensor-times-matrix algorithms in
double-precision Tflops. Each distribution line belongs to a library: tlib[ours] (),
tcl (), tblis (), libtorch (), eigen (). Libraries have been tested
with asymmetrically-shaped (left plot) and symmetrically-shaped tensors (right plot).

The tensor extension of eigen (v3.3.7) is used by the Tensorflow framework.
Library libtorch (v2.3.0) is the C++ distribution of PyTorch. tlib denotes our
library using algorithm <par-loops,seq-gemm> that have been presented in the
previous paragraphs.

Fig. 2 contains cumulative performance distributions for the complete test
sets comparing the performance distribution of our implementation with the pre-
viously mentioned libraries. Note that we only have used tensor slices for asym-
metrically shaped tensors (left plot) and subtensors for symmetrically shaped
tensors (right plot). Our implementation with a median performance of 793.75
Gflops outperforms others’ for almost every asymmetrically shaped tensor in the
test set. The median performances of tcl, tblis, libtorch and eigen are 503.61,
415.33, 496.22 and 244.69 Gflops reaching on average 74.11%, 61.14%, 76.68%
and 39.34% of tlib’s throughputs.

In case of symmetrically shaped tensors the performance distributions of all
libraries on the right plot in Fig. 2 are much closer. The median performances
of tlib, tblis, libtorch and eigen are 228.93, 208.69, 76.46, 46.25 Gflops reaching
on average 73.06%, 38.89%, 19.79% of tlib’s throughputs2. All libraries operate
with 801.68 or less Gflops for the cases 2 and 3 which is almost half of tlib’s
performance with 1579 Gflops. The median performance and the interquartile
range of tblis and tlib for the cases 6 and 7 are almost the same. Their respective
median Gflops are 255.23 and 263.94 for the sixth case and 121.17 and 144.27
for the seventh case. This explains the similar performance distributions when
their performance is less than 400 Gflops. Libtorch and eigen compute the tensor-
matrix product, in median, with 17.11 and 9.64 Gfops/s, respectively. Our library

2 We were unable to run tcl with our test set containing symmetrically shaped tensors.
We suspect a very high memory demand to be the reason.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

tlib has a median performance of 102.11 Gflops and outperforms tblis with 79.35
Gflops for the eighth case.

7 Conclusion and Future Work
We presented efficient layout-oblivious algorithms for the compute-bound tensor-
matrix multiplication which is essential for many tensor methods. Our approach
is based on the LOG-method and computes the tensor-matrix product in-place
without transposing tensors. It applies the flexible approach described in [2]
and generalizes the findings on tensor slicing in [10] for linear tensor layouts.
The resulting algorithms are able to process dense tensors with arbitrary tensor
order, dimensions and with any linear tensor layout all of which can be runtime
variable.

Our benchmarks show that dividing the base algorithm into eight different
GEMM cases improves the overall performance. We have demonstrated that al-
gorithms with parallel loops over single-threaded GEMM calls with tensor slices
and subtensors perform best. Interestingly, they outperform a single batched
GEMM with subtensors, on average, by 14% in case of asymmetrically shaped
tensors and if tensor slices are used. Both version computes the tensor-matrix
product on average faster than other state-of-the-art implementations. We have
shown that our algorithms are layout-oblivious and do not need further refine-
ment if the tensor layout is changed. We measured a relative standard deviation
of 12.95% and 17.61% with symmetrically-shaped tensors for different k-order
tensor layouts.

One can conclude that LOG-based tensor-times-matrix algorithms are on
par or can even outperform TTGT-based and GETT-based implementations
without loosing their flexibility. Hence, other actively developed libraries such as
LibTorch and Eigen might benefit from implementing the proposed algorithms.
Our header-only library provides C++ interfaces and a python module which
allows frameworks to easily integrate our library.

In the near future, we intend to incorporate our implementations in TensorLy,
a widely-used framework for tensor computations [4, 8]. Currently, we lack a
heuristic for selecting subtensor sizes and choosing the corresponding algorithm.
Using the insights provided in [10] could help to further increase the performance.
Analysis of different batched GEMM implementations might also reduce the
overall runtime. The block interleaved approach, described in [5], is a promising
starting point.

Source Code Availability Project description and source code can be found
at https://github.com/bassoy/ttm. The sequential tensor-matrix multiplication
of TLIB is part of uBLAS and in the official release of Boost v1.70.0 and later.

References
1. Bader, B.W., Kolda, T.G.: Algorithm 862: Matlab tensor classes for fast algorithm

prototyping. ACM Trans. Math. Softw. 32, 635–653 (December 2006)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

2. Bassoy, C.: Design of a high-performance tensor-vector multiplication with blas.
In: International Conference on Computational Science. pp. 32–45. Springer (2019)

3. Bassoy, C., Schatz, V.: Fast higher-order functions for tensor calculus with tensors
and subtensors. In: International Conference on Computational Science. pp. 639–
652. Springer (2018)

4. Cohen, J., Bassoy, C., Mitchell, L.: Ttv in tensorly. Tensor Computations: Appli-
cations and Optimization p. 11 (2022)

5. Dongarra, J., Hammarling, S., Higham, N.J., Relton, S.D., Valero-Lara, P.,
Zounon, M.: The design and performance of batched blas on modern high-
performance computing systems. Procedia Computer Science 108, 495–504 (2017)

6. Karahan, E., Rojas-López, P.A., Bringas-Vega, M.L., Valdés-Hernández, P.A.,
Valdes-Sosa, P.A.: Tensor analysis and fusion of multimodal brain images. Pro-
ceedings of the IEEE 103(9), 1531–1559 (2015)

7. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM review
51(3), 455–500 (2009)

8. Kossaifi, J., Panagakis, Y., Anandkumar, A., Pantic, M.: Tensorly: Tensor learning
in python. Journal of Machine Learning Research 20(26), 1–6 (2019)

9. Lee, N., Cichocki, A.: Fundamental tensor operations for large-scale data analysis
using tensor network formats. Multidimensional Systems and Signal Processing
29(3), 921–960 (2018)

10. Li, J., Battaglino, C., Perros, I., Sun, J., Vuduc, R.: An input-adaptive and in-place
approach to dense tensor-times-matrix multiply. In: High Performance Computing,
Networking, Storage and Analysis, 2015. pp. 1–12. IEEE (2015)

11. Lim, L.H.: Tensors and hypermatrices. In: Hogben, L. (ed.) Handbook of Linear
Algebra. Chapman and Hall, 2 edn. (2017)

12. Matthews, D.A.: High-performance tensor contraction without transposition.
SIAM Journal on Scientific Computing 40(1), C1–C24 (2018)

13. Napoli, E.D., Fabregat-Traver, D., Quintana-Ortí, G., Bientinesi, P.: Towards an
efficient use of the blas library for multilinear tensor contractions. Applied Math-
ematics and Computation 235, 454 – 468 (2014)

14. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Tensors for data mining and
data fusion: Models, applications, and scalable algorithms. ACM Transactions on
Intelligent Systems and Technology (TIST) 8(2), 16 (2017)

15. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32 (2019)

16. Pawlowski, F., Uçar, B., Yzelman, A.J.: A multi-dimensional morton-ordered block
storage for mode-oblivious tensor computations. Journal of Computational Science
33, 34–44 (2019)

17. Shi, Y., Niranjan, U.N., Anandkumar, A., Cecka, C.: Tensor contractions with
extended blas kernels on cpu and gpu. In: 2016 IEEE 23rd International Conference
on High Performance Computing (HiPC). pp. 193–202 (Dec 2016)

18. Solomonik, E., Matthews, D., Hammond, J., Demmel, J.: Cyclops tensor frame-
work: Reducing communication and eliminating load imbalance in massively par-
allel contractions. In: Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on. pp. 813–824. IEEE (2013)

19. Springer, P., Bientinesi, P.: Design of a high-performance gemm-like tensor–tensor
multiplication. ACM Transactions on Mathematical Software (TOMS) 44(3), 28
(2018)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_18

https://dx.doi.org/10.1007/978-3-031-63749-0_18
https://dx.doi.org/10.1007/978-3-031-63749-0_18

