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Abstract. The development of Cloud-Fog-Edge computing infrastruc-
tures in response to the rapid advance of IoT technologies requires appli-
cations to be positioned closer to users at the edge of the network. Char-
acterised by a geographically distributed configuration with numerous
heterogeneous nodes, these infrastructures face challenges such as node
failures, mobility constraints, resource limitations and network conges-
tion. To address these issues, the adoption of microservices-based applica-
tion architectures has been encouraged. However, the interdependencies
and function calls between services require careful optimisation, as each
has unique resource requirements. In this paper, we propose a new model
and heuristic for the placement of microservices in the Cloud-Fog-Edge
continuum, based on community detection and a greedy algorithm to op-
timise energy use while taking into account the resource constraints and
ensuring that response time is acceptable. This method aims to reduce
energy consumption and network load, thereby improving the efficiency
and sustainability of the infrastructure. Results have been compared with
different scenarios and show that our approach can significantly reduce
energy consumption and make efficient use of resources.

Keywords: Energy efficiency, Microservices placement, Sustainability, Cloud-
Fog-Edge Continuum, Optimization, Graph partitioning.

1 Introduction

The development of smart technologies, particularly those associated with the
Internet of Things (IoT), has played a central role in the ongoing transforma-
tion of the internet in response to user behaviour and emerging needs [1]. This
evolution has led to the emergence of new applications, services and network
infrastructures. Given the significant increase in data exchanges and the need
for rapid response times, these applications need to be deployed as close as pos-
sible to users. The resulting reduction in latency and improved responsiveness
of the services guarantee more efficient interaction and a better user experience.
To meet these requirements, the Cloud-Fog-Edge continuum is emerging as a
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key architectural solution, offering a strategic distribution of computing, storage
resources and capacities closer to end users [2]. However, this infrastructure is
also characterised by a geographically distributed configuration with numerous
heterogeneous nodes facing challenges such as node mobility, failures, resource
limitations and network congestion.

These constraints have encouraged the adoption of application architectures
based on microservices, which are lightweight, flexible and modular modules,
unlike traditional monolithic architectures. According to [3] microservices are
defined as a series of small services that operate independently, offering modu-
larity, ease of deployment and scalability. These are key advantages in hetero-
geneous and resource-constrained environments. However, microservices archi-
tectures involve dependencies and function calls between services, each of which
has specific resource requirements and needs to be optimised. Inadequate po-
sitioning of microservices can cause high latency, over-consumption of energy
and a higher environmental impact, increased costs and, more generally, impact
on service availability and quality. This highlights the importance of adopting
energy-efficient management and deployment strategies, particularly in the dy-
namic resource-constrained environments of the Cloud-Fog-Edge continuum.

Many researchers have focused on creating placement algorithms for dis-
tributed applications in Fog environments [4–8], focusing on metrics such as
latency and quality of service. However, the specific placement of Fog applica-
tions based on microservices remains widely underexplored, particularly with
regard to optimising energy consumption. For these reasons and since this is a
complex multi-criteria optimisation problem, we propose a model and a heuristic
for placing microservices in the Cloud-Fog-Edge continuum, based on commu-
nity detection and a greedy algorithm. This approach aims to optimise energy
consumption by minimising the communication distances between services, while
taking into account node resource constraints and respecting response times. By
strategically adapting microservices according to the interaction groups detected,
we are able to reduce energy consumption and the load on the network.

This paper is structured as follows: Section 2 reviews recent research on
microservice placement and load balancing. Section 3 describes the proposed
model, and Section 4 details the heuristic and its constituent algorithms. Sec-
tion 5 presents a comprehensive evaluation of the heuristic through various tests
and analyses. Finally, the paper summarizes the main contributions in Section 6.

2 Background

Microservices placement methods mainly use meta-heuristics or graph-based ap-
proaches. Meta-heuristics encompass different approaches such as particle swarm
optimisation (PSO) in its various forms, and different load balancing mechanisms
to ensure efficient resource allocation. Graph-based methods are also used since
they provide a systematic approach, using network topologies to refine placement
decisions, offering a structured contrast to the adaptive and often probabilistic
nature of meta-heuristic solutions.
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Pallewatta et al. [4] introduce a method focusing on resource balancing and
service efficiency utilizing Multi-Objective PSO (MOPSO) for optimal microser-
vice instance creation, coupled with Load-Balancing Request Routing (LBRR)
and Load-Balancing Instance Placement (LBIP) for equitable service request al-
location and CPU utilization. The authors [6] approach microservices placement
as a bi-criteria optimization problem. They also use a PSO-based meta-heuristic
to establish instances and identify the Pareto front, alongside techniques for
evenly distributing requests akin to an unbounded bin-packing problem. Djemai
et al. [9] formulated the placement problem as an optimization task, focusing on
minimizing energy consumption and reducing delays in IoT applications. The ap-
proach uses a Discrete Particle Swarm Optimization (DPSO) algorithm, which
operates with real-valued velocities to find optimal service locations. The phys-
ical setup is mapped as a graph, while IoT applications are represented as Di-
rected Acyclic Graphs (DAGs). Mortazavi et al. [10] introduce a custom cuckoo
search algorithm for service placement (CSA-SP) to optimize the positioning of
services in fog nodes, aiming to minimize energy consumption while considering
data transfer constraints and resource availability. The article [11] outlines a self-
managing approach using the Whale Optimization Algorithm (WOA) for IoT
services deployment across a three-tiered fog architecture, focusing on Quality
of Service (QoS) for enhanced throughput.

Saboor et al. [12] propose a mathematical framework for the dynamic place-
ment of container microservices based on rank matrix optimization, utilizing
the stochastic matrix from microservices call graphs. They use eigenvector cen-
trality to identify the most central microservices of an application, which will
be grouped together in energy-efficient containers. Samani et al. [13] introduce
a multilayer partitioning algorithm for Fog computing, tackling devices diver-
sity by depicting resources as a four-layered graph, each reflecting similarities
in network, CPU, memory, and storage among Fog nodes. Utilizing the Lou-
vain algorithm [14], nodes are grouped by attributes, leading to a condensed
graph of averaged clusters, thereby enabling application placement in similar
resource environments. In [8] the authors propose a two-phase strategy for Fog
computing: first, using community detection to map and partition nodes, placing
applications based on deadlines; second, allocating services within Fog commu-
nities, using first-fit. Selimi et al. [15] propose a streamlined service deployment
method for services in community micro-clouds, using a set number of clusters
and network state information. Their Bandwidth and Availability-aware Service
Placement algorithm involves node clustering with K-means, cluster head selec-
tion for optimal bandwidth, and dynamic service placement.

Authors in [7] introduce DECA, a method for energy and carbon-efficient
placement in Edge Clouds, optimizing setup and migration to cut costs and
emissions. Utilizing graph models and an A* algorithm, DECA considers geo-
graphical data and CO2 outputs, aiming for a balance between energy use and
expense. This strategic placement enhances both environmental sustainability
and operational efficiency. In [5] authors present a fully decentralized placement
strategy designed for Fog-Edge environments, utilizing Markov approximation to
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optimize communication among microservices, starting with random placement
on Fog nodes and adjusting based on a Markov Chain representation.

In light of this state of the art, existing methods focus primarily on opti-
mising availability, resource allocation, minimising delays and improving service
quality. However, these approaches often neglect the critical dimension of energy
efficiency, which is paramount given growing environmental concerns and the
escalating costs associated with energy consumption in large-scale deployments.
Our approach aims to fill this gap by specifically targeting the reduction of en-
ergy consumption in microservices placement. By incorporating energy-sensitive
measures into our placement strategy, we aim not only to improve the efficiency
of resource use and communication within the network, but also to significantly
reduce the overall energy footprint of microservices deployment.

3 Model formulation

This section presents our model. We first describe our network topology and
microservices applications graphs. Then we expand upon this model to discuss
the microservices placement problem.

3.1 Network infrastructure

We propose a network model for the Cloud-Fog-Edge continuum. Each com-
puting node is responsible for processing application placement requests. These
nodes, spread across various locations, are heterogeneous in terms of geographical
placement and available resources, including processing power and memory. The
ability to adapt to these dynamic conditions is crucial to maintaining network
functionality and ensuring continuous operation despite the inherent challenges
posed by outages, node movement and varying levels of network congestion.

In our work, we consider three layers in the network architecture: Cloud
layer, Fog layer and Edge/IoT layer. The devices of each level have specific
characteristics and have resources to host and execute services.

– Cloud layer: refers to data centers that possess high-performance computing
resources and resources high enough to be considered unlimited.

– Fog layer: is situated between the Cloud and the end-users. These nodes offer
computational and storage services in close proximity to the end-users.

– Edge layer, or client layer: corresponds to a set of user devices from which
placement requests originate.

We model the physical topology of Cloud-Fog-Edge architecture as a con-
nected undirected graph GP = (VP , EP ), where vertices represent physical exe-
cution nodes and edges are network links between these devices. We denote VP

the set of physical nodes. Each of these nodes ni ∈ VP has the following char-
acteristics: a speed of processing capacity cpui in MIPS, a memory size rami

in GB and a power consumption ranging from pidlei when the device in on but
not in use to pmax

i when used to the maximum, with a linear increase between
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Fig. 1: Deployment and placement example of two microservices applications
provided from the dataset [16].

these two values. Each physical link l = {ni, nj} ∈ EP is identified by the two
nodes ni and nj it connects and is characterized by a bandwidth bwl = bwi,j

and a propagation delay Prl = Pri,j . Following this, we can build a logical
link l′. We assume that if a node can communicate with another non adjacent
node in the network, we can add a logical link between these two nodes. This
link represents the shortest path P in terms of propagation delay composed of
a sequence of physical links between the two nodes. bwl′ = minl∈P (bwl) and
Prl′ =

∑
l∈P (Prl), i.e. the minimum bandwidth on the path and the sum of the

propagation delay on the path. Therefore, the network connections represent a
complete graph with the consideration of physical and logical links.

3.2 Microservices applications and function paths

In our research, applications are a collection of microservices. Each of them is
implemented as a standalone container, with specified resource needs. These mi-
croservices communicate, inter operate with each other and exchange data via
function calls (API) to accomplish a specific application task. A micro-services
application can be modeled as a directed acyclic graph (DAG) GS = (VS , ES)
where the nodes represent the services VS = {s1, s2, ..., st) and the edges are the
dependencies and the function calls between the services. Each service sk ∈ VS

requires some resources consumption: a requested CPU cpuk in million instruc-
tions and a requested RAM ramk in GB. Each directed link (sk, sl) ∈ ES that
connects sk to sl represents the request need and the data dependencies between
these two microservices. It is characterised by a message size datak,l.

We define three distinct categories of services, depending on the origin of the
service request: firstly, sensors and actuators, for which requests come only from
users, these components act as source nodes within the DAG application. The
second category comprises internal services, responsible for processing operations

5

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_17

https://dx.doi.org/10.1007/978-3-031-63749-0_17
https://dx.doi.org/10.1007/978-3-031-63749-0_17


requested exclusively by other microservices. The third category represents the
final microservices, which constitute the sinks in the DAG.

Within the described microservices graph framework, we introduce the con-
cept of Microservice Function Paths, or MFP, denoting an organized sequence of
dependencies designed to execute a particular task. Essentially, an MFP encap-
sulates a microservice source and all its direct and indirect successors, extending
down to the sinks. An MFP therefore consists of one and only one source, but
may have several sinks as shown in Figure 2. This graph has 4 sources and is
therefore made up of 4 MFP. In microservices architecture, source nodes serve
as the main entry points for user requests. The descendants of these nodes, and
their connections, represent the dependency network and the trajectory of func-
tion calls throughout the system. We design the process in such a way that each
action is initiated by a source node and traverses the network, ultimately ending
at terminal nodes, which correspond to the final microservices where transactions
or processes are completed.

discovery_service

config_server

edge_server

card statement

card_statement monitor

rabbitmq

turbine

Fig. 2: Example of microservices dependencies graph of an IT blog called the card
statement application taken from the dataset [16]. One MFP is highlighted.

3.3 Energy efficiency placement problem

In the context of Cloud-Fog-Edge computing, effective management of energy is
crucial to maintain an optimal use of resources. Our goal is to place microservices
in the network graph in a way that minimises energy consumption. We consider
that the total energy consumption is the sum of energy from node execution and
energy from network communication. Energy used by node ni, see Equation (1),
is composed of a fixed term pidlei if there is at least one microservice placed on
ni plus the fraction of CPU used by each microservice sk placed on node ni.
Similar to the works of [9–11], we consider a linear correlation between resources
utilisation and energy consumption and therefore each microservice use a frac-
tion of

(
pmax
i − pidle

i

)
. Similarly, a communication between two microservices sk

and sl uses some energy on both end nodes ni and nj involved for the total
duration (transmission time plus propagation delay Pr) of the transmission, see
Equation (2). If two microservices are placed on the same physical node there is
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no communication (except memory transfers that have very low consumption)
and we therefore consider the energy to be zero. Also, if two microservices are
not placed on physically adjacent nodes but use a logical link, all intermediate
nodes are switched on even if they are not used for computation.Minimize Etot =

∑
ni∈VP

Enode(ni) +
∑

(ni,nj)∈V 2
P

Ecom(i, j)

such that all capacity constraints are respected

Enode(ni) =

Node ni is on︷ ︸︸ ︷
pidlei δ(_, ni)+

∑
sk∈VS

δ(sk, ni)
cpuk

cpui

(
pmax
i − pidle

i

)
︸ ︷︷ ︸

Fraction of CPU for MS sk

(1)

Ecom(ni, nj) =
∑

(sk,sl)∈V 2
S

δ(sk, ni)δ(sl, nj)

Transmission time︷ ︸︸ ︷(
datak,l

bwi,j
+ Pri,j

) [
pmax
i + pmax

j − pidle
i − pidle

j

]
︸ ︷︷ ︸

Energy used on both ends
(2)

Where δ(sk, ni) is equal to 1 if microservice sk is placed on node ni and 0
otherwise, and δ(_, ni) is equal to 1 if there is at least one microservice sk such
that δ(sk, ni) = 1. Note that the communication energy is only described for
physical links but the same applies for all the nodes alongside a logical link.

We focus solely on RAM as the primary constraint for our analysis. However,
it is important to note that other constraints, such as storage limitations or other
resources, could also be added in the microservices constraints:∑

sk∈VS

ramk.δ(sk, ni) ≤ rami, ∀ni ∈ VP (3)

3.4 Minimum execution time of an MFP

The execution time of an MFP is a composite of two primary components: the
processing time at each node and the time taken to traverse the network’s edges
when microservices on different network nodes must communicate with each
other. If there is a direct or indirect dependency between two microservices,
they cannot be run at the same time since one needs the other and conversely if
there is no dependency then microservices can be executed in parallel.

To formalize this, we use the notion of depth in directed acyclic graph. In
a DAG, the depth of a node measures its distance from the source nodes (i.e.,
nodes without predecessors) which are at depth 0. A node u is at depth k if
the longest path from a source node to that node u has k edges. For example,
the microservices in Figure 2 are organized according to their depth levels. In
this way, each depth represents an additional step in the graph’s sequence of
dependencies. With this definition, two microservices at the same depth can be
run in parallel (no dependency at all) and two microservices that are not at the
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same depth can be interdependent and must not be run in parallel. In practice,
two microservices can be independent even with a different depth if they are on
different paths of the DAG. This notion of depth is extended to DAGs and MFP
by considering it to be the maximum depth of their nodes.

From this, we define the minimum time execution of any MFP as its depth.
Indeed, we consider that if the entire MFP is on the same server, i.e. without
any network transmission, then all microservices on the longest path from a
source to a sink will have to be executed one after the other. If microservices are
not placed in the same network node, their execution will generate additional
network communications and the overall execution time will increase.

It should be noted that, in practice, when a microservice sk queries another
microservice sl, sk will perform calculations, send a request to sl, which will in
turn perform calculations and possibly query other services, then sl will send
back a response to sk, which will perform final calculations. The return time
will just double the transmission times, but in a homogeneous way. We therefore
disregard it and consider that there is no response.

4 Proposed solution for energy efficiency microservices
placement

To solve the placement problem, we propose a heuristic placement approach
based on community detection that aims to optimize the allocation of appli-
cations in communities of devices by considering available resources and their
requirements. In a nutshell, our approach consists of two main phases: firstly, we
identify a community of network nodes in which to place the application, and
secondly, we select the network nodes within the selected community.

4.1 Community based selection

In a graph, communities are groups of nodes that are densely connected. That
means, there is a lot of edges within a community, and few or less edges be-
tween communities. In our context, a community therefore represents a group
of network nodes which are strongly connected: if communications between mi-
croservices are required, it would be preferable to place them in an area where
communication possibilities are numerous. We make the assumption that the
communication between microservices that are not placed in the same network
nodes consumes the most energy and that the power electric cost is lower within
communities compared to outside communities. Once the network communities
are determined, we select all the MFP from the microservices dependency graph.
We aim to allocate entire MFP within a single community to minimize inter-
community exchanges.

The first phase therefore starts by calculating communities of devices using
Louvain algorithm [14] which is fast and gives good results. We assign a score to
each community, determined by its available resources and its size. We identify
communities that are both resource-rich and have a large number of nodes. The
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score gives priority to communities that are both resource-rich and large in size,
in which we begin to place the largest MFP as follows:

Community_score = total_cpu × total_ram × num_Node (4)

These communities are then ranked in ascending order according to their respec-
tive scores. Similarly, the applications are assigned scores based on their resource
requirements and sorted in descending order as follows :

MFP_score = total_cpu × total_ram × num_MS. (5)

The algorithm iterates through the MFP with the aim of placing the largest
MFP in the smallest community that can fully accommodate it. If a community
meets the requirements, the MFP is placed in that community, and the resource
usages are updated accordingly. However, if no community has enough resources,
the algorithm divides the MFP, by placing as many as possible of the partitions
in the community with the highest score and the remaining partitions in an-
other adjacent community identified by the shortest distance between them i.e
the lowest edge weight between two pairs of nodes belonging to the two commu-
nities. This iterative process ensures efficient allocation of applications in device
communities, considering both available resources and application requirements.

Algorithm 1 Community detection based placement algorithm for MFP
Input Microservices applications DAG, Network graph
Output placement communities for all the applications

1: C ← calculate device communities and assign a score to each
2: OC ← order communities C in ascending score
3: MFP ← extract the MFP from the DAGs App and assign a score to each
4: OMFP ← order applications by descending score
5: MFPlacement← ∅
6: for MF in OMFP do
7: for Comm in OC do
8: if Comm has enough resources then
9: MFPlacement(Comm,MF)

10: updateResourceUsages(Comm,MF)
11: RecalculateScore(Comm)
12: ReorderCommunitiesByScores(C)
13: end if
14: end for
15: Divide MFP, place partitions in highest-scored and the remainder in adjacent

communities
16: end for

4.2 Node inside community selection

The second phase partitions MFP using the Kernighan-Lin algorithm [17] to
obtain clusters of microservices. The algorithm is a graph partitioning method
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used to divide a graph into two parts while minimizing the number of edges be-
tween the two parts. It is a bipartitioning algorithm that offers granular control
and predictability over partitioning, enabling a minimal but efficient division,
in alignment with our goal of grouping as many microservices as possible. We
start by dividing the MFP into two partitions and then applying the algorithm
to each partition until we have 1 node per partition to obtain a complete (bi-
nary) dendrogram. We then calculate a fitness function for each node within the
community, considering both available resources and the node betweenness cen-
trality (node_BetCent), a measure that quantifies the number of times a node
acts as a bridge on the shortest path between two other nodes. We assign a fac-
tor of 0.7 to available resources and a factor of 0.3 to intermediate centrality as
we consider that available resources are more critical than intermediate central-
ity. More in-depth study should be performed to evaluate the impact of these
0.7/0.3 factors. In the context of microservices placement networks, leveraging
this measure helps in identifying strategic nodes, thereby optimizing energy con-
sumption through more efficient communication paths and reduced transmission
distances:

Node_fit = 0.7×
(

MFP_resources_requirement
node_available_resources

)
+0.3×(node_BetCent) (6)

We then select the node with the highest fitness and we place as much microser-
vices as possible on this node, respecting the dendrogram (i.e. placing MS in
order one by one). Once the node is full, the other MS are placed on the next
node and so on. This method ensures that microservices are distributed in a
manner that optimizes resource utilization and maintains the logical grouping
determined by the KL algorithm.

Algorithm 2 Node inside community-based application placement
1: KLMFP ← generate the KL partitions
2: ON ← order devices in community by the fitness
3: for MFPpartition in KLSFC do
4: for partition in MFPpartition do
5: for each N in ON do
6: if N has enough resources then
7: for each service-id in partition do
8: if service-id not already placed then
9: SelectNode(N, service-id)

10: Update resource usages(N)
11: ReorderNodesByFitness(ON)
12: else
13: Continue to next service-id if already placed
14: end if
15: end for
16: else
17: Continue to next node if insufficient resources
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5 Evaluation and results

Direct comparison of our heuristic with existing state-of-the-art approaches presents
difficulties, mainly because few studies focus on microservices placement taking
into account specific architectural dependencies and inter-microservices commu-
nications. Furthermore, the existing literature does not address the energy effi-
ciency aspect of microservices placement.Therefore, to evaluate the effectiveness
of our microservices placement heuristic, we carried out extensive validations to
guarantee that (1) all the microservices of each MFP are deployed, (2) energy
consumption is reduced, (3) resources consumption are respected, and finally
(4) deployment time does not exceed twice the minimum execution time. To
evaluate our heuristic approach, we developed three baseline scenarios:

– No overload where we use the same heuristic but limit network node re-
source usage at 70 %. This prevent overloading and ensure redundancy.

– Without community where we do not make use of communities for MFP
placement. Nevertheless, the algorithm assigns scores to nodes based on re-
sources and attempts to rank MFP from largest to smallest, similar to the
proposed heuristic.

– Random implements random placement, this algorithm starts by selecting
a node at random and places as many MFP as possible in that vertex. Then
another node is chosen, again at random, and this process is repeated until
all the MFP have been placed.

All our tests were carried out on an Intel(R) Core(TM) i7-9850H CPU @ 2.60GHz
2.59 GHz computer, with 32 GB of RAM running on the Windows 10 Profes-
sional Education system. Simulations were performed using Python 3.9.13. We
used the Networkx library for the graph algorithms used in our heuristic.

5.1 Experimental setup

Network We used the topology of Oteglobe, obtained from The Internet Zoo
topology library [18]. Oteglobe is a European operator known for providing
telecommunications services to network operators. We divided this topology into
three sets of nodes to create a single Cloud node, which represents the most cen-
tral node determined by its betweenness centrality, this measure quantifies the
centrality of a node as a key bridge in the shortest paths between two other
nodes. Of the remaining nodes, 50% are designated as Fog nodes (nodes with
the highest betweenness except the Cloud one). Finally, the remaining nodes are
classified as Edge nodes. This partitioning strategy is aimed at modeling a di-
verse network infrastructure. For the simulation of resource characteristics (such
as the number of cores, CPU speed and memory) of each Fog device, we employed
a uniform random distribution similar to [13,19]. In addition, the bandwidth and
latency configurations in the Fog network were defined in accordance with the
methodologies used in previous studies [9, 13]. We have additionally assigned
weights to the topology graph based on the maximum and minimum electrical
power values. All the specific details are provided in Table 1.
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Parameter (unit) Value or range
Network Zoo Topology Dataset Oteglobe [18]
Number of nodes/links 81 / 103
Type of nodes 1 Cloud, 40 Fog, 40 Edge
CPU(GIPS) [250-500] (Cloud), [1.5-4] (Fog), [1-1.5] (Edge)
Ram(GB) [100-250] (Cloud), [2.5-5] (Fog), [1-2] (Edge)
pidle(J) 145 (Cloud), 45 (Fog), 30 (Edge)
pmax(J) 320 (Cloud), 169 (Fog), 90 (Edge)
Bandwidth (KB/ms) 75
Link Propagation delay (ms) 1
Applications Microservices dataset [16]
Microservices number [5-25] depending on the application
CPU (MI) [300-800]
Ram (MB) [100-600]
Message size (KB) [1500-4500]

Table 1: Parameters (network and microservices) used in the experiments.

microservices applications We used the microservices dependency graph
dataset taken from [16]. This dataset contains 20 distinct application architec-
tures, each application consisting of a variable number of microservices ranging
from 5 to 25. Each is represented by an acyclic directed graph where the nodes
represent the microservices and the edges the function calls and dependencies
between them. We used a uniform random distribution to assign values for var-
ious computing resources (such as cpui speed, memory size rami and also to
specify the message size datai,j between microservices. To obtain a realistic and
more challenging placement environment, we have duplicated the MFP obtained
from these applications.

5.2 Results analysis

To analyse and evaluate the performance of our heuristic and compare it with the
different scenarios mentioned above, we have used a number of metrics: (1) the
energy consumption of the placement by measuring intra-nodes energy in nodes
and inter-nodes communication energy; (2) the difference between the observed
execution time and the minimal execution time; (3) the number of nodes used
for the deployment of all MFP, considering that a node is used if at least one
microservice is placed on it or if it is used for transmission; and (4) the number
of links used as a measure of the dispersion of microservices.

Our heuristic has a clear advantage in terms of optimizing energy consump-
tion over the other scenarios, as our evaluation shows in Figure 3a. Our ap-
proach reduces energy consumption in comparison with the strategy that limits
node utilization to only 70% of capacity. This constraint restricts the efficient
use of resources, since we are forced to place microservices in a higher number
of nodes, generating more communications and therefore more energy between
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(a) Energy consumption. (b) Excess time (observed - minimum).

(c) Total number of Nodes used. (d) Total number of Links used.

Fig. 3: Comparison of the different microservice placement scenarios.

nodes. The comparison becomes even broader if we compare it to the version
with a similar placement, but without the communities. This version, lacking
community-based strategic allocation, does not place microservices that often
communicate closely. Finally, the random strategy is not at all effective as ex-
pected. This disparity underlines the effectiveness of the heuristic we propose,
not only in exploiting the full potential of the nodes, but also in ensuring a
more coherent community-oriented deployment of services, which significantly
improves the overall performance and energy consumption of the system.

Observed time of MFP execution We compared the observed execution
time obtained through the placement with the minimum execution times that
depends on the depth of the MFP. Figure 3b shows the cumulative time differ-
ence between the observed values and the minimum values (where each MFP is
placed on a single node), This allows us to assess the extent to which the de-
ployment times observed correspond to theoretical expectations. The proposed
heuristic shows lower cumulative time differences than the other methods, indi-
cating closer alignment with theoretical expectations. By contrast, the "No Over-
load" approach shows slightly higher time differences, followed by the "Without
Communities" and "Random" approaches, suggesting that these approaches de-
viate more from expected deployment times.

Nodes and links number The analysis demonstrates that our method sur-
passes other approaches in efficiency by utilizing fewer links and nodes as the
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quantity of MFP to be placed increases (see Figures 3c and 3d). This indicates a
more effective optimization of communications and resource distribution. While
the "No overload" strategy consumes more network nodes, its efficiency in link
usage remains high due to strategic node selection within the same community,
minimizing distance despite underutilized capacities because of imposed limita-
tions. Conversely, the "Without community" and "Random" strategies, despite
their relatively efficient employment of network nodes, exhibit significant inef-
ficiencies in network communications. The "Random" strategy, in particular, is
noted for its potential to select nodes that are exceedingly distant for placing
microservices of the same MFP, leading to suboptimal communication paths.

6 Conclusion and future work

In this study, we developed a heuristic for the placement of microservices in IoT
environments, based on community detection to optimise energy consumption
in heterogeneous Cloud-Fog-Edge nodes with limited resources. Our proposed
heuristic partitions the network into communities to identify nearby, strongly
connected network nodes in order to prioritize the placement of MFP within
these communities. We then used a best-fit approach to place the largest MFP in
the smallest communities that could accommodate them. Our heuristic provides
better results in terms of node and link utilization, and consequently a lower
energy consumption than three other strategies.

In our future research, we aim to refine the placement of microservices in
the Cloud-Fog-Edge continuum by including user nodes in the network topol-
ogy, improving the management of microservice instances for energy efficiency,
and implementing dynamic placement strategies that respond to real-time user
needs and resource changes. In addition, we plan to integrate a wider range of
environmental metrics, such as embodied energy and greenhouse gas emissions,
to assess and optimise the environmental footprint of our deployment strategies.
These efforts aim to optimise content delivery and minimise energy consumption,
helping to create more sustainable and efficient IT environments.
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