
Time Series Predictions Based on PCA and
LSTM Networks: a Framework for Predicting

Brownian Rotary Diffusion of Cellulose
Nanofibrils ⋆

Federica Bragone[0000−0003−4132−3175], Kateryna
Morozovska[0000−0002−4065−715X], Tomas Rosén[0000−0002−2346−7063], Daniel
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Abstract. As the quest for more sustainable and environmentally friendly
materials has increased in the last decades, cellulose nanofibrils (CNFs),
abundant in nature, have proven their capabilities as building blocks to
create strong and stiff filaments. Experiments have been conducted to
characterize CNFs with a rheo-optical flow-stop technique to study the
Brownian dynamics through the CNFs’ birefringence decay after stop.
This paper aims to predict the initial relaxation of birefringence using
Principal Component Analysis (PCA) and Long Short-Term Memory
(LSTM) networks. By reducing the dimensionality of the data frame
features, we can plot the principal components (PCs) that retain most
of the information and treat them as time series. We employ LSTM by
training with the data before the flow stops and predicting the behav-
ior afterward. Consequently, we reconstruct the data frames from the
obtained predictions and compare them to the original data.

Keywords: Principal Component Analysis · Long Short-Term Memory
· Time Series · Cellulose Nanofibrils

1 Introduction

Cellulose nanofibrils (CNFs), the fundamental building block of all plants and
trees, have extraordinary mechanical properties in terms of strength and stiffness
and are considered one of the major materials in terms of providing sustainable
options to many advanced materials used today [16]. Through controlled align-
ment and assembly of dispersed CNFs, very strong and stiff filaments can be
created by means of flow-focusing wet spinning, as described in [20]. Successful
spinning relies on a delicate balance of timescales and, in particular, the compet-
ing effects from hydrodynamic forcing (causing alignment through shear and ex-
tensional flow) and Brownian rotary diffusion (causing de-alignment) [21]. These
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effects, in turn, depend heavily on how the CNFs are extracted from biomass
and the raw material source. Even the same raw material and extraction proto-
col can yield completely different CNF behavior in flowing processes. Therefore,
developing methodologies for quick quality determination of CNF dispersions
is crucial to assess their suitability in material processes. A potential method
is the rheo-optical flow-stop experiment described by Rosén et al. [22]. A flow
cell is used to align the dispersed CNFs by means of flow-focusing (see Fig. 1).
When placed between two cross-polarized linear polarization filters, the trans-
mitted intensity of light through the filters and flow cell will be a measurement
of the CNF alignment as the system becomes birefringent. When the flow is
instantly stopped, the decay of birefringence will thus be a measurement of the
Brownian rotary diffusion of the CNFs. Both the behavior during flow, as well
as the timescales of decay after stop, become a unique fingerprint of the CNF
dispersion that can be classified and used to determine the CNF quality. In this
work, we will explore the possibility of predicting the behavior after stopping the
flow by training our model on the information before the flow stop and for some
frames after the flow stop. This would allow us to monitor a material process in
operando and perform classification without actually stopping the flow.

4095
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Fig. 1: Illustration of the rheo-optical flow-stop experiment as described by Rosén
et al. [22]; (A) a core flow of dispersed CNFs (flow rate 23.4 ml/h) is focused
by two sheath flows of water (each flow rate 13.5); the setup is illuminated
by laser light and placed between cross-polarized linear polarization filters; the
transmitted light intensity, corresponding to CNF alignment, is recorded with a
camera; channel width is 1 mm; (B) a typical camera image, measuring intensities
from 0 to 4095 (12 bit).

These flow-stop experiments produce large amounts of datasets. In partic-
ular, the datasets comprise data frames with specific intensities. One dataset
consists of the flow of one CNF material at a particular concentration. Several
materials and concentrations are tried out, resulting in large quantities of data.
Dimensionality reduction techniques can then help analyze the data with smaller
amounts of features. In particular, Principal Component Analysis (PCA) [30],
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[12] is one of the major techniques to reduce data dimensions in the area of
Machine Learning (ML). PCA transforms the original dataset into a new set
of orthogonal features, a linear combination of the original variables defined
as principal components (PCs). The transformation accounts for the maximum
variance of the data stored in the first PC, and consequently, the other PCs add
up cumulatively in descending order.

As these PCs create a new set of coordinates retaining most of the variance,
they can be visualized as time series over the data frames of our dataset. Working
with these time series, we aim to create an automatic model that predicts the
behavior of the CNFs dynamics after the flow is stopped. If successful, it would
allow the creation and running of a monitoring system at the production line
without involving any physical stop. Consequently, we would have an artificial
stop capable of predicting the Brownian dynamics of the different CNFs, given
their behavior, before the flow is stopped. To achieve an automatic prediction
of the lower dimensional PCs, we adopt an ML technique capable of working
with sequences and time series: Long Short-Term Memory (LSTM) networks
[11]. LSTM is a type of Recurrent Neural Network (RNN) [29], [19] designed to
overcome the vanishing gradient problem that RNNs often encounter [1]. The
class of RNNs is distinguished from classical Artificial Neural Networks (ANNs)
as they present recurrent connections in their hidden layers, meaning that their
looping constraints capture the sequential information stored in the data. LSTM
are more complex structures that can learn complicated and long patterns, given
their capability of selectively remembering or forgetting significant information.
For this reason, LSTM networks are suitable for time series predictions [23].

Our work aims to implement an LSTM for each time series created by PCs:
each network is trained on the time steps before the flow-stop, including a few
data frames after the stop, and then predicts the following behavior. Collecting
all the results, we can reconstruct the data frames by inverting the PCA trans-
formation and finally compare the predictions with the original data. This study
aims to create an automatic method that can capture the dynamic behavior of
the CNFs after the flow is stopped. In return, it can help further studies on the
characterization of the materials and concentrations of CNFs. Moreover, it could
simulate other materials using the proposed method rather than physically set-
ting up and running the experiment. The overall goal is to create a model that
simulates an artificial flow stopping capable of predicting the Brownian dynam-
ics of any CNF after being trained on the flow before the flow stop on different
CNF samples and concentrations. In this way, the physical stopping experiments
could be avoided and implemented easily in the production line without waiting
a long time to produce several experiments in the labs. This paper is the first
step towards the broader goal and has the following contributions:

– We propose a method to automatically predict the CNF’s behavior after
the flow is stopped in the rheo-optical flow-stop technique. The model will
possibly simulate and characterize further combinations of materials and
concentrations without requiring physical experiments.
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– Our model combines a dimensionality reduction technique, like PCA, and an
ML method, like LSTM, to predict sequential data created by the PCs. The
results show promising behavior predictions, especially after the flow stop.

– The reconstruction from the predicted PCs is already accurate; however,
PCA did not capture certain particle-like CNF clusters completely.

The paper is structured as follows. Section 2 presents related work using similar
methods and techniques for time series predictions. In Section 3, the methods
used for our model are introduced. Section 4 describes the data utilized and the
simulation’s architecture and details. The results are shown in Section 5. Finally,
Section 6 includes a discussion of the results and closing conclusions.

2 Related Work

The first RNN was introduced in 1989 [29], and consequently, partially connected
RNNs were developed in [7] and [13]. They focus on time series by discover-
ing and modeling their relations and information. Several works afterward ex-
tended these preliminary implementations, applying them to several problems.
The main drawback of RNNs is that they suffer from the vanishing gradient
problem. Therefore, RNNs cannot fully capture the non-stationary dependen-
cies over long periods and multiple time dependencies [18]. Gating mechanisms
are introduced to substitute the classical activation functions to overcome this
problem. LSTM is one of the models that, with its three gates, can update a cell
state by capturing the long-term dependencies [11]. In 2014, the Gated Recurrent
Unit (GRU) was introduced [4], a variant of the LSTM network. This mecha-
nism improves short-term information integration but also predicts long-term
dependencies. GRU comprises a gating system with a simplified cell structure
compared to the LSTM. In [5], an evaluation of gated recurrent neural networks
on sequencing models is presented. In particular, a comparison between LSTM
and GRU networks is given, and their predictions provide related results. A
large-scale analysis on several network architectures is performed in [3], where
LSTM outperformed GRU networks. Several LSTM architectures were devel-
oped, including Bidirectional LSTM [10], hierarchical and attention-based LSTM
[32], [27], Convolutional LSTM [15], LSTM autoencoder [9], Grid LSTM [14],
and cross-modal [26] and associative LSTM [6]. Sequence-to-Sequence (Seq2Seq)
networks, introduced in [24], also work on using an input sequence to predict out-
put sequences. More findings and comparisons of the network and architecture
variants to predict nonlinear time series are presented in [18].

More recently, transformers have been considered for time series analysis
and predictions, and several studies have been made to investigate their effec-
tiveness [28], [33]. Transformers are a machine learning architecture based on
multi-head self-attention mechanisms that work with sequential data [25]. They
became popular in applications like natural language processing (NLP), speech
recognition, and computer vision. In [17], a temporal-fusion transformer (TFT)
is introduced to forecast multi-horizon and multivariate time series. TFT can
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interpret the temporal dependencies with different time scales by merging the
LSTM Sequence-to-Sequence and the transformers’ self-attention mechanism.

In computational science, many problem domains produce large amounts of
data, which is not always essential for analysis. For this reason, reduced order
models and dimensionality reduction techniques become powerful tools for re-
ducing the number of features while retaining most information. Several works
utilize PCA to apply their models then. In [8], the authors apply PCA and
LSTM for the short-term power system load forecast. In the context of time
series predictions, the work in [31] presents a PCA-LSTM model for anomaly
detection and prediction of time series power data. Stock prices rely on time se-
ries forecasting, and in [2], the authors first use PCA to reduce the data features
and then apply RNNs to predict stock prices. In [34], it also works on stock price
prediction but applies a PCA-LSTM model instead.

To the best of our knowledge, our model is the first to consider the time
dependencies of the CNF flow by considering the principal components and
applying LSTM networks to predict the behavior after the flow is stopped.

3 Methods

3.1 Dimensionality Reduction

Dimensionality reduction techniques are fundamental methods that reduce the
number of attributes of a dataset while preserving most of the variation of
the original dataset. One of these techniques is Principal Component Analysis
(PCA), which transforms the data into a new set of uncorrelated variables called
principal components (PCs). The first PCs contain most of the variance present
in the dataset. The first step of performing PCA involves the standardization of
the dataset; each variable is scaled using its corresponding mean and standard
deviation values. The covariance matrix of the variables is computed, identify-
ing the correlations between features. The following step involves computing the
eigenvectors and the eigenvalues of the covariance matrix to identify the PCs.
Finally, the PCs are created and arranged according to their eigenvalues, from
the highest to the lowest.

3.2 Long Short-Term Memory

Recurrent Neural Networks (RNNs) are artificial neural networks that capture
sequential data dependencies. Long Short-Term Memory (LSTM) networks [11]
are a type of RNN capable of dealing with long-term dependencies. The LSTM
network comprises the input gate i, the forget gate f , and the output gate o.
The input gate gives information on the new inputs loaded in the cell state Ct.
The forget gate highlights the information that should not be kept in the cell
state. Finally, the output gate gives the final output of the LSTM block, ht, at
time step t. The equations representing the gates at time step t are as follows:
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ft = σ(Wfxt + Ufht−1 + bf ) (1)

it = σ(Wixt + Uiht−1 + bi) (2)

ot = σ(Woxt + Uoht−1 + bo) (3)

where σ represents the sigmoid function; Wf , Wi, and Wo are the input
weights for the forget, input, and output gates, respectively; Uf , Ui, and Uo are
the recurrent weights for the forget, input, and output gates, respectively; ht−1

is the output of the previous LSTM block at time step t− 1; xt is the input at
the current time step t; and bf , bi, and bo are the biases of the input, forget and
output gates, respectively. The following equations represent the cell state Ct,
the candidate cell state C̃t and the final output of the LSTM block ht:

C̃t = tanh(Wcxt + Ucht−1 + bc) (4)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (5)

ht = ot ⊙ tanh(Ct) (6)

where Wc and Uc represent the candidate cell’s input and recurrent weights,
respectively; the operator ⊙ represents the element-wise product, and the tanh
is the hyperbolic tangent activation function. The cell state Ct includes both
the information that needs to be forgotten from the previous cell state Ct−1

and the information that needs to be looked at in the current time step from
the candidate cell state C̃t. Finally, we define ht as the output of the current
LSTM block, which includes the current cell state passed through the activation
function to decide the block’s output.

4 Input Data and Experiment Description

The data used in this study is generated from the cellulose spinning process and
subsequent flow-stop experiments designed to capture changes in the process. We
consider one experiment generated by one carboxymethylated (CM) CNF at a
concentration of 3.0 g/l. The choice of the sample used for this study was purely
arbitrary. The dataset contains 15000 frames of size 640×100 at 1000 fps recorded
by a 12-bit camera with intensity values between 0 and 4095. The experiment
shows the flow-stop experiment, meaning the flow is stopped around frames
5000-6000. For our work, we consider the data frames around the flow stop.
In particular, we consider a total of 5000 frames: 3000 and 2000 frames before
and after the flow-stop, respectively. We are interested in finding an automatic
model that can predict what happens after the flow is stopped without actually
stopping the flow. In this way, the physical experiments would not need to be
stopped to characterize the materials, which is fundamental given the complexity
of the experiment. Despite considering a smaller amount of data frames, the
dimension of the data is still significant. For this reason, we can apply PCA, a
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Fig. 2: Plot of the 10 PCs.

dimensionality reduction technique: by keeping most of the information available
in the dataset, we reduce the amount of variables in the dataset. First, the data
is normalized in the range of (0, 1), then PCA is performed. Only 10 PCs are
considered for this work, which already retains 85.19%. The first PC keeps most
of the information, precisely 82.24%. 10 PCs can already identify the flow well:
using fewer PCs, certain particle-like CNF clusters would be missed; using more
PCs, we risk introducing more noise. If we plot the resulting PCs over the frames,
we can observe that they create some time series. It is also visible in the plots
where the flow is stopped, as shown in Fig. 2.

Working on the lower-dimensional space created by the PCs, we could treat
these components as time series, train our model on the first part, and predict
when the flow is stopped.

4.1 LSTM Architecture

The LSTM model is created using the open-source libraries Keras and Tensor-
Flow in Python. The model consists of 10 LSTM networks, one for each PC.
For a better generalization, each network has the same hyperparameters and
structure. The only difference arises when using EarlyStopping for the number
of the argument patience for a few PCs.

First, we split the time series into 67% training and 33% test for each PC,
giving 3350 data frames for training and 1650 data frames for testing. The net-
work predicts the time series using a window. Considering the data between t−w
and t, for some value w, we would like to predict one time step forward, i.e.,
t+1. The value w defines the size of the window, specifying how many previous
time steps we are looking to predict the future value. In particular, it is defined
as the look-back period. For our model, we chose a look-back period of three
time steps, considering three previous values to predict the following time step.
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The network has an input layer with one input, two hidden layers with 20
LSTM blocks each, and an output layer with a single-value prediction. The ac-
tivation function used is the rectified linear unit (ReLU). The model is compiled
using the mean squared error (MSE) loss function and the Adam optimizer with
a default learning rate of 10−3. The model is fitted and trained for 100 epochs,
and an EarlyStopping is placed to monitor the test loss with a patience value
of 50. This function stops the training when the test loss no longer improves,
specifically for 50 consecutive epochs. For two cases, in particular PCs 2 and 3,
the patience value is set up to be 5 and 10, respectively, since it was noticed
that the model was starting to overfit at early epochs. Finally, the model is used
to generate predictions for the training and the test datasets.

5 Results

This section reports the results of training an LSTM network for each PC. The
corresponding predictions are then stacked and reversed to the original data
format to compare the results. We train each network for 100 epochs, possibly
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Fig. 3: Loss functions for training (blue) and test (orange) for the first PC.

stopping the training earlier when no improvement in the minimization of the
test loss is observed. Fig. 3 shows the evolution of the training loss, the blue line,
and the test loss, the orange line, for the first PC.

Fig. 4 shows the training and test predictions of the LSTM networks for
the 10 PCs. In particular, the light blue line is the original data, the dashed
darker blue line is the LSTM training predictions, and the dashed red line is the
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LSTM test predictions. The plots show that the LSTM model can capture the
component values evolving over the data frames. In particular, the test score of
the first PC is of the most interest, as it captures most of the information stored
in the original dataset. As for the second and third components, we can notice
some discrepancies between the original data and the test predictions. It might
be due to more noise in these components, hence more abrupt changes in the
data. The train and test scores for the 10 PCs are presented in Table 1. The
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Fig. 4: LSTM predictions on the 10 PCs.

scores capture the root mean squared error (RMSE) between the original data
and the predictions. All the results were tested multiple times with different
random seeds to assess the robustness of the model in terms of initialization
of the network. For the first PC, a standard deviation of the scale of 10−2 for
training and 10−1 for test was noticed between different runs. While for the other
PCs, a scale of 10−3 and 10−1 for training and test, respectively, was observed.
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Table 1: RMSE scores for each PC for training and test datasets of LSTM.
PC 1 2 3 4 5 6 7 8 9 10

Train score 0.26 0.15 0.14 0.12 0.14 0.14 0.11 0.10 0.19 0.10

Test score 1.61 0.62 0.70 0.12 0.16 0.07 0.06 0.04 0.17 0.05

The predicted data is then reversed using the inverse transform function
available for the sklearn.decomposition.PCA from the sklearn library. Fi-
nally, the reconstructed predictions are compared to the original data frames.
Fig. 5 shows the snapshots of the original data, the predicted data using PCA
and LSTM, and the pointwise absolute error for certain data frames. The choice
of the specific data frames to display was purely arbitrary. In particular, the plots
in Figs. 5a and 5b display some results before the flow is stopped, precisely for
data frames 1100 and 2980. They represent the predicted results of the training
set used for the model. We noticed that the predictions already captured the flow
well for both cases. However, some parts are poorly captured, as seen in their
respective error evaluations. This could relate to using a smaller dataset created
by only 10 PCs, which retains 85.19% of the total information. Therefore, it is
assumed that the considered PCs might not have captured entirely some CNFs.
Instead, the plots in Figs. 5c and 5d represent the flow after the stop. Snap-
shot 3340 refers to the training dataset; however, snapshot 5000 is part of the
test data, where LSTM networks validated the model. By looking at the error
plots for data frames 3340 and 5000, the results improved compared to the data
frames before the flow stop. The intensity of the errors is lower, meaning that
both PCA and LSTM can capture most of the CNFs flow in each data frame.
Fig. 6 shows the mean absolute error (MAE) over the intensity of the images
between the original data and the LSTM predictions for each frame. It can be
noticed that the predictions for the test set (red line) are more accurate than
the predictions for the training set (blue line).

Regarding the computational time, evaluating each LSTM network requires,
on average, 280 seconds per network, amounting to around 46 minutes for the
whole model. The model was run using an Intel Core i7-1185G7 processor at
3.00GHz × 8.

6 Discussion and Conclusion

CNFs have been proven to be essential building blocks for creating more sus-
tainable materials in the future. Their mechanical strength and stiffness are
fundamental properties for achieving environmentally friendly alternatives.

In our work, we propose an ML model that involves dimensionality reduction
of the data through PCA and LSTM predictions of the time series created by the
principal components. First, we scale down the number of variables of our data
frames, keeping 10 PCs for the analysis. The 10 PCs already explain 85.19% of
the total variance. The first PC is the most critical as it already retains 82.24%
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Original

Error

Prediction

Intensity
0 500 1000 1500 2000 2500 3000 3500 4000

0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 100 200 300 400 500 600

0
25
50
75

0
25
50
75

0
25
50
75
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Fig. 5: Data frames 1100 (a), 2980 (b), 3340 (c) and 5000 (d). Top: Original
data. Middle: LSTM predictions. Bottom: Pointwise absolute error between the
original and predicted snapshots. Each frame has a size of 640x100 pixels.

of the information. Representing 85% of the variance, we can already identify
the flow well. Using fewer PCs would lead to neglect of some particle-like CNF
clusters, especially before the flow stops. On the other hand, using more PCs
would introduce more noise. Further analysis should be considered to distinguish
the noise from the particle-like CNF clusters, as we would like to retain as much
information as possible about the flow. By reducing the dimensionality of the
workspace, we are left with new coordinates that, if plotted over the time steps
of the data frames, produce ten time series. In the flow-stop experiments, we
are interested in analyzing the Brownian dynamics for the given CNF materials
and concentrations that emerge after the flow is stopped. The goal is to make
this analysis automatically without performing physical experiments by stopping
the flow. For this reason, we propose a time series prediction of the PCs after
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Fig. 6: MAE between the original data and the LSTM predictions for each frame.

the flow is stopped. First, by reducing the dimensionality, we reduce the large
amount of data available and the computational costs. Secondly, we can exploit
ML models’ capabilities in predicting and forecasting sequential data and time
series.

Classic time series forecast methods include Autoregressive Moving Average
(ARMA), Autoregressive Integrated Moving Average (ARIMA), and Seasonal
Autoregressive Integrated Moving Average (SARIMA) models. They combine
the autoregressive model to make predictions based on the data observed in the
previous steps and the moving average model, which regulates the model by
monitoring the average prediction errors of earlier predictions. While ARMA is
the base model, ARIMA addresses time series trends, and SARIMA focuses on
seasonality. Given that we are considering time series that do not have proper
trends and seasonality and are looking at longer time frames, these models were
not considered appropriate for our problem. Machine learning models are iden-
tified to be suitable for the kind of problem we are addressing. Especially given
the number of data frames we are taking into account. Our choice of LSTM is
because we can use a relatively more straightforward model with accurate re-
sults. Several networks and models are mentioned in Section 2. However, the
basic LSTM network is a good candidate for the work without using more com-
plex architectures that would require more parameter tuning and computational
power. The trade-off between accuracy and simplicity makes us choose a model
that stands in between. Without giving up on the efficiency of the predictions,
we can build a model that uses few layers and neurons but can guarantee a pre-
cise result within minutes of training. A choice of transformer architecture would
have possibly increased the accuracy of the predictions. However, the improve-
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ment would not have been so high as to disregard the simplicity of the LSTM
that was just implemented. Moreover, when we want to achieve a broader goal
using more datasets simultaneously, we believe that the computational time and
power will increase, leading to the choice of a model like LSTM. However, vari-
ants of LSTM networks like Bidirectional LSTM and GRU were tried without
gaining any benefit in accuracy and computational execution.

The results obtained using LSTM are already satisfactory. First, comparing
the LSTM model to the PCA result for each PC shows that LSTM performs
accurately both for the training and test. The most critical PC is the first,
and the corresponding RMSE test score is 1.61 over the intensity. Considering
that it is the component retaining most of the information, it follows that it
requires more hyperparameter tuning. By looking at the accuracy of the LSTM
predictions, the results are particularly accurate for the data after the flow stop.
In particular, analyzing both the pointwise absolute error of the data frames and
the mean absolute error shows that the accuracy in the predictions for the test
dataset is higher than in the training dataset. This follows from the fact that for
the data frames before the flow stops, higher intensities are present, showing the
flow of CNFs. PCA has already struggled to capture a few of the particle-like
CNF clusters, transferring some errors to the LSTM predictions. Therefore, the
predictions for the data frames before the flow stop are less accurate. However,
as the flow is stopped and less intensity is present in the images, PCA is capable
of capturing most of the particle-like CNF clusters. As a consequence, the LSTM
model can predict more precise results. The model takes about 45 minutes to
run on a laptop. However, as we would like to implement this approach on a
real-time production line, we will consider different computational approaches
for future work, like running the code on GPUs and parallel computing, since
the outcome of one network does not affect the others.

The work presented is the first step that allows for extending more exper-
iments. It helps to focus and understand the flow behaviors in a reduced di-
mensional space created by PCA. In particular, we distinguish the PCA values
before the flow stop and the PCA values after the flow stop. Using a machine
learning method, we can predict the dynamics after the flow is stopped with
reasonable accuracy. However, further steps will allow us to have a more robust
model. The following steps will include training the model on the principal com-
ponents before the stop of repeated experiments of the same material and same
concentration and predicting the behavior after the flow is stopped of an exper-
iment that the model did not train on (but maintaining the same material and
same concentration). Further, we could train on the same sample but different
concentrations and analyze the model’s predictions on an unseen concentration
of the same material. Finally, the ultimate goal would involve predicting the
Brownian dynamics after the flow stop of any CNF material and concentration.
Therefore, the preliminary work presented in this paper allows us to identify the
type of models that can be used to achieve this goal and proves the feasibility of
the predictions. If we can reach the final step, we could run a monitoring system
at the production line without performing the actual stop in the experiment.
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We could, therefore, achieve an artificial stopping that will not need to stop the
flow and will need extra manual work, which will benefit the industry.
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