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Abstract. Pre-trained language models encounter a bottleneck in pro-
duction due to their high computational cost. Model compression meth-
ods have emerged as critical technologies for overcoming this bottle-
neck. As a popular compression method, knowledge distillation trans-
fers knowledge from a large (teacher) model to a small (student) one.
However, existing methods perform distillation on the entire data, which
easily leads to repetitive learning for the student. Furthermore, the ca-
pacity gap between the teacher and student hinders knowledge transfer.
To address these issues, we propose the Data-efficient Knowledge Distilla-
tion (DeKD) with teacher assistant-based dynamic objective alignment,
which empowers the student to dynamically adjust the learning process.
Specifically, we first design an entropy-based strategy to select informa-
tive instances at the data level, which can reduce the learning from the
mastered instances for the student. Next, we introduce the teacher assis-
tant as an auxiliary model for the student at the model level to mitigate
the degradation of distillation performance. Finally, we further develop
the mechanism of dynamically aligning intermediate representations of
the teacher to ensure effective knowledge transfer at the objective level.
Extensive experiments on the benchmark datasets show that our method
outperforms the state-of-the-art methods.

Keywords: Pre-trained language model - Model compression - Knowl-

edge distillation

1 Introduction

Large-scale pre-trained language models (PLMs), such as BERT [1], XLNet [24],
RoBERTa [5], T5 [9], and GPT-4 [8], have reached very competitive performance
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and simply require fine-tuning of downstream natural language processing (NLP)
tasks [4, 23]. However, PLMs require large computational resources for huge
amounts of model parameters, which leads to overloaded GPU usage and slow
inference speeds in real-world production. To reduce computation and carbon
footprint, knowledge distillation (KD) [2] has emerged as an effective method
to compress large models into small ones and has gradually become the most
popular choice among various compression methods.

Table 1. The performance comparison between BERT-base and BERT-large under
different numbers of layers and varying data conditions.

SST-2 QNLI

Teacher Layer Acc Acc
3-layer (50%) 85.44 82.24

BERT-base 3-layer 85.55 82.46
12-layer 92.55 91.32

3-layer (50%) 83.25 78.94

BERT-large 3-layer 83.71 79.22
24-layer 93.00 92.66

The core concept of KD is based on the teacher-student learning framework,
in which the teacher transfers knowledge to the student via soft targets. Existing
KD methods [3,6,12,13,15,21] mainly focus on transferring knowledge from the
teacher model to the student model in the form of single or multiple teacher
models. However, these methods have two major drawbacks: (1) They do not take
into account the student’s mastery of knowledge during the distillation process,
so the student continues to learn instances that contain repeated information. (2)
They ignore the capability gap between the small student and the large teacher,
which degrades the distillation performance. For example, as shown in Table 1,
part of the data can produce the similar distillation performance as all the data.
This is because the student model can gain important knowledge from a portion
of the informative data. Furthermore, the 3-layer student model distilled from
the stronger teacher model is weaker than the same student model distilled from
the weaker teacher model on the same tasks. Generally speaking, BERT-large
performs better than BERT-base on the SST-2 and QNLI tasks, but a stronger
teacher model does not always lead to a better student model. The reason is
that the competency of the small student model cannot match that of the large
teacher model, which weakens distillation performance.

Based on the above insights, in this paper, we propose the Data-efficient
Knowledge Distillation (DeKD) with teacher assistant-based dynamic objective
alignment, which promotes knowledge transfer from the teacher model to the
student model and improves the distillation performance as the competency of
the student evolves. On the one hand, as distillation progresses, the student’s
learning on a downstream task is gradually deepened, and examples that the stu-
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dent has already learned should be eliminated, which inspires us to investigate
which data is more important to distillation. On the other hand, the capacity gap
between the weak student and the strong teacher motivates us to overcome the
limitations of the student. We strive to answer the following research questions:
(RQ1) Which data is actually useful for the student model during the distil-
lation process? (RQ2) How to consider the evolution of the student model to
realize efficient distillation? Specifically, we first choose representative instances
to learn based on entropy to maximize data efficiency and prevent the student
from repeating learning at the data level. Then, we introduce a teacher assistant
model at the model level, which allows the student to decide whether to query
the teacher or the teacher assistant for enhancing the performance of KD. More-
over, at the objective level, we further design a dynamic objective alignment
strategy that aligns the informative layers to alleviate the objective supervision
problem between the large teacher and the small student. We conduct extensive
experiments on several benchmark datasets to validate the effectiveness of our
method. Experimental results clearly show that our DeKD significantly boosts
the performance of the student model.
As a summary, the contributions of this paper are threefold:

— We are the first to consider efficient KD from the data, model, and objective
levels, which is critical but overlooked by existing KD methods.

— We choose informative instances based on the prediction entropy of the stu-
dent to achieve a competitive performance on part of the data. Meanwhile,
we introduce the teacher assistant model and dynamic supervision alignment
to improve the performance of the student as it evolves.

— We conduct extensive experiments on the benchmark datasets, and the re-
sults demonstrate that our method outperforms the state-of-the-art distilla-
tion methods.

2 Related Work

Knowledge distillation [2,22] aims to compress the knowledge of a large and com-
putationally complex model into a simple and computationally efficient model.
The KD approach has been widely used in the compression of pre-trained lan-
guage models. Existing KD methods for compressing large-scale language models
are divided into general distillation and task-specific distillation.

General distillation refers to conducting KD on the universal text corpus. For
example, DistilBERT [10] presents a method for pre-training a smaller general-
purpose language representation model, which can subsequently be fine-tuned to
perform well on a variety of tasks. PD [14] demonstrates that pre-training is still
crucial in the setting of smaller architectures, and that fine-tuning pre-trained
compact models may compete with more complicated strategies suggested in
concurrent work. In addition, the large Transformer-based pre-trained models
can be compressed using a straightforward method called deep self-attention
distillation, which is presented in MiniLM [19]. The self-attention module of
the large model (teacher), which is crucial to Transformer networks, is deeply
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imitated to train the small model (student). In the subsequent work, MiniL.Mv2
[18] uses the self-attention relation distillation to generalize and streamline the
deep self-attention distillation of MiniLM [19]. The above studies of general
distillation require extra training time and computational resources, and they
are not applicable in resource-limited scenarios.

Instead, task-specific distillation trains the student model on specific down-
stream tasks. In particular, BERT-PKD [13] encourages the student model to
extract knowledge from the intermediate layers of the teacher model, rather
than just learning parameters from the last layer of the teacher model. Recently,
the idea of combining the knowledge from models with different capacities has
been explored [6,12,15]. Besides, MUKI [3] broadens the concept of KD from
mimicking teachers to integrating teacher knowledge, and proposes Knowledge
Integration (KI) for PLMs. KI attempts to train a flexible student capable of
making predictions over the union of teacher label sets given multiple fine-tuned
teacher-PLMs, each of which is capable of conducting classification over a unique
label set. Nevertheless, the effectiveness of distilling the knowledge from a large
language model into a small one has not yet been well studied. The phenomenon
of the student repeating learning and the gap in capacity between the large-scale
teacher and the compact student still exist.

In this study, we focus on the task-specific distillation, which is widely used in
practice. Compared to previous KD approaches, we further investigate efficient
KD and consider the competency evolution of the student model to comprehen-
sively improve the distillation effect.

3 Methodology

We propose the DeKD framework, and Fig. 1 depicts its general design. Firstly,
we choose informative data using an entropy-based approach to prevent repeated
learning of the student model. Then, we introduce the teacher assistant to make
the student model match the competency of the teacher model, thus alleviat-
ing the ability gap to boost the distillation performance. In addition, objective
alignment can also bring additional performance improvement. The specific im-
plementation strategy is to select the informative layers from the teacher and
then let our student align with the teacher’s hidden representations of these
layers.

3.1 Preliminary

The goal of knowledge distillation is to train the student model S not just using
the information supplied by true labels but also by studying how the teacher
model T represents and interacts with the data.

KD [2] uses the teacher’s model outputs, for instance, as a soft learning target
for the student. We represent S(x) and T'(x) as the output logit vectors of the
student and the teacher for input x, respectively. Then, the Kullback-Leibler
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Fig. 1. Our proposed DeKD framework.

(KL) divergence loss between the student and teacher output is calculated as
follows:

Lrr = KL(o(S(2)/7)[|6(T (2)/7)), (1)

where ¢(+) refers to the softmax function, and 7 is included as a temperature hy-
perparameter to provide additional control over signal softening from the output
of the teacher model.

The distillation loss and the original classification loss (i.e., the cross-entropy
loss) over the ground-truth label y are used to update the parameters of the
student:

Lop = —ylog ¢(S(x)), (2)
L=(1-XNLop+ Mk, (3)

where A is the hyperparameter that regulates the trade-off between the two
losses. It should be noted that training of the original distillation is performed
indiscriminately on all instances based on the given objectives and the weights
corresponding to different objectives. However, it is unreasonable to ignore the
evolution of the student model during the training process. This motivates us to
explore an efficient distillation framework from three aspects: data, model, and
objective, which will improve the learning efficiency of the student model.

3.2 Data Selection (DS)

In response to the first research question, we explore which data is more benefi-
cial to the performance of the student model. The student becomes stronger as
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the distillation progresses, which easily leads to repeated learning for those in-
stances that the student has mastered. Therefore, selecting informative instances
is important to avoid repeated learning by the student.

Formally, given N instances in a batch, P(y|z) = ¢(S(z)) represents the
output class probability distribution of the student across the class label y for
each instance x. The scaled entropy of the probability distribution is used to
compute the uncertainty score U, for z, and U, is calculated as:

Ug

Ue = log |Y]’ (4)
Y|
uy ==Y Ply|z)log Py | =), (5)

where Y is the number of labeled classes. We rank the instances in a batch based
on their prediction uncertainty and pick just the top IV X r instances to query
the teacher model. Here, r € (0,1] refers to the selection ratio that controls
the number of instances to query. The selected instances have high uncertainty
scores, indicating that they are informative instances that the student should
learn from.

3.3 Teacher Assistant (TA)

In this part, we respond to the second research question from the model level.
The capacity gap between the teacher and the student is an inherent issue.
Our solution is to introduce the teacher assistant model and dynamically query
the teacher or the teacher assistant according to the evolution of the student’s
competency during the training process. The core idea behind this is to empower
the student to adjust the learning process based on its current state.

We assume that the student can rely on the teacher assistant during the initial
training stage and turn to the teacher for more accurate supervision signals as the
student becomes stronger. More specifically, we sort the instances in a batch in
accordance with the prediction confidence of the student model. The confidence
C, is measured by entropy, as:

Cy = Entropy(¢(S(x))). (6)

Here, the higher the confidence C, is, the more uncertain the student is.
Therefore, we can evenly divide instances into the certain and uncertain ones
for the student. For the certain part, the student learns the supervision signals
from the teacher, while the teacher assistant provides soft labels for the instances
about which the student is uncertain. The loss function is determined as:

Lra=Liy+ Lk, (7)

where L%, refers to the KL divergence distance between the student and the
teacher, and £%; denotes the KL divergence distance between the student and
the teacher assistant.
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Algorithm 1 Training of the Student Model

Input: Training data D, number of epochs F, set of parameters {2 needed to train the
student model

Output: An optimized student

1: for epoch e =1 to E do

2:  for each batch Dy € D do

3: Select informative instances via the uncertainty score: U, = 10;‘#

4: Divide the instances into two parts: the certainty part and the uncertainty

part by confidence: C, = Entropy(¢(S(z))).

5 Loss L74 becomes: L14 = [Z?{L + L“f}L.
6 Compute the entropy of the hidden representations H: R, =
7: Select the M layers via the R, value to align the teacher.
8: Update parameters {2 by: Liotat = MLcE + XoLra + A3LpA.
9

0

Entropy(¢(H(z)))
log Y| '

end for
: end for

3.4 Dynamic Objective Alignment (DOA)

We finally deal with the second research question from the objective level. In-
spired by the previous studies [13] on the alignment of the intermediate layers
between the teacher and the student, we further investigate dynamic objective
alignment to boost the distillation performance. According to the previous stud-
ies, the corresponding aligned objective weights are determined by hyperpara-
metric search and remain constant during the training. To address the aforemen-
tioned issue, we choose the informative layers based on the entropy calculation
of the corresponding layer representations to dynamically align the teacher, thus
preventing unnecessary alignment.

We first compute the entropy R, of the hidden representations H of the

teacher: Ent (¢p(H(x)))
_ Entropy €z
R, = log |V ’ ®

the greater the value of R, is, the more informative the hidden representations
of this layer are. We sort the R, of each layer from large to small and select
M layers with higher R, values. Then, the loss of dynamic objective alignment
becomes

M t 2
S| B ()
ﬁDA = Sl - J 3 (9)
=l g N e
L 16|,

where M represents the number of layers in the student model, I(j) denotes that
the i-th layer of the student is aligned with the j-th layer of the teacher; h® and
h? are hidden representations of the student and the teacher, respectively.

3.5 Total Loss

Finally, the total loss is determined as follows:

Liotal = MLcE + XoLra+N3Lpa, (10)
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where A1, Ao and A3 are hyperparameters for adjusting the loss weight. The
overall training process of our DeKD is divided into three steps. At the beginning,
we fine-tune BERT on the corresponding downstream task to get the teacher
model. We then distill the teacher model to obtain the teacher assistant model.
After that, we run Algorithm 1 to produce the final student model.

4 Experiments

4.1 Datasets

We conduct evaluations on eight representative text classification benchmarks.
(1) We choose three different NLP tasks: Paraphrase Similarity Matching (PSM),
Sentiment Classification (SC), and Natural Language Inference (NLI). For the
PSM tasks, we select MRPC and QQP [16]. For the SC tasks, we test on SST-
2 [16] and Emotion [11]. For the NLI tasks, we evaluate on QNLI and MNLI
[16]. (2) We also add two additional text classification tasks: AG News [26] and
IMDb [7]. The statistics of the datasets are shown in Table 2.

Table 2. Statistics of the datasets.

Dataset #Train #Dev #Test
MRPC 3,668 408 1,725
SST-2 67,349 872 1,821
QNLI 104,743 5,463 5,463
MNLI 392,702 9,832 9,847
AG News 120,000 - 7,600

QQP 363,849 40,430 390,965
Emotion 16,000 2,000 2,000
IMDb 20,000 5,000 25,000

4.2 Baselines

We choose seven representative KD methods as baselines. Moreover, we consider
these methods with 3 and 6 layers of transformers as the student models. The
baselines we compare are as follows:

Vanilla KD [2]: By minimizing the original KL divergence loss, the student
model is trained to emulate the soft targets created by the logits of the teacher
model.

BERT-PKD [13]: To fully exploit the rich knowledge contained in the
deep structure of the teacher model, the patient-KD method enables the stu-
dent model to patiently learn from the teacher through a multi-layer distillation
process.
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DFA [12]: DFA tries to learn a compact student model capable of handling
the comprehensive classification issue from multiple trained teacher models, each
of which specializes in a different classification problem.

CFL [6]: CFL maps the hidden representations of the teachers into a com-
mon space. The student is trained by matching the mapped features to those of
the teachers, with supplemental supervision from the logits combination.

UHC [15]: The class sets of teacher models are used by UHC to divide the
student logits into subsets. Each subset is trained to mimic the output of the
teacher model that corresponds to it.

MUKI [3]: Based on the estimated model uncertainty, MUKI designs a
model uncertainty-aware knowledge integration framework. The golden supervi-
sion is approximated by either taking the outputs of the most confident teacher
or softly integrating different teacher predictions according to their relative im-
portance.

KSM [17]: KSM proposes an actor-critic method for selecting appropriate
knowledge transfer at different training steps. This optimization considers the
impact of knowledge selection on future training steps.

Table 3. The performance of the student model on the test set of the benchmark
datasets. The best results from each group of student models are in bold. We also
report the average performance for each task in the “AVG.” column.

Method Student MRPC SST-2 QNLI MNLI AG News QQP Emotion IMDb AVG.
BERT-base - 88.48 9255 91.32 83.87 9471  90.96 93.55 89.24 90.59
Vanilla KD 3layer 7590 79.66 78.15 71.22  60.11 81.32 53.91 79.25 72.44
BERT-PKD 3-layer 76.55 83.53 80.71 7231  62.17 8381 56.56 80.13 74.47
DFA 3-layer 7547 8261 79.33 71.01  63.23  80.57 54.63 79.36 73.28
CFL 3layer 76.57 83.78 81.88 73.13  60.21 8426 59.38 80.87 75.01
UHC 3-layer 7857 84.86 8235 73.76  75.67 84.68 64.72 81.35 7825
MUKI 3layer 80.99 85.67 83.05 74.37  88.19 8581 7291 8293 8174
KSM 3-layer 8190 85.83 83.62 74.63  90.76  86.12 89.31  83.95 84.52
DeKD (Ours) 3-layer 83.39 86.01 84.11 74.82 93.68 86.57 92.35 84.24 85.65
Vanilla KD 6-layer 80.21 81.37 79.86 7233 6258 82.37 5571  80.33 74.35
BERT-PKD 6-layer 8142 84.16 8157 73.67  63.57 8428 59.23 81.27 76.15
DFA 6-layer 81.12 83.36 80.76 7281 6546 82.24 58.62 80.22 75.57
CFL 6-layer  82.53 84.67 8239 74.63  64.74  85.92 6217 8234 77.42
UHC 6-layer 83.72 85.74 83.62 75.67 7819 8671 68.16 83.66 80.68
MUKI 6-layer 84.97 86.29 85.16 77.54  90.63 87.35 79.64 84.51 84.51
KSM 6-layer 87.19 89.21 86.09 79.26  92.37  88.93 91.82 8531 87.52

DeKD (Ours) 6-layer 87.48 89.91 87.00 80.17 94.28 89.17 93.15 86.12 88.41

4.3 Implementation Details

We implement our method based on the HuggingFace transformers library [20].
The results of all experiments are obtained from a single NVIDIA V100 GPU.
We first fine-tune the 12-layer BERT-base as the teacher model and distill it to
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obtain the 6-layer and 9-layer teacher assistant models, respectively. The 6-layer
teacher assistant is configured for the 3-layer student, and the 9-layer teacher
assistant is configured for the 6-layer student. Then, we fine-tune the 3-layer and
6-layer students via our method to get the final student models, respectively. In
our setting, we set the number of fine-tuning epochs to 3, the batch size to 32,
the learning rate to 2e-5, and the distillation temperature to 5. Meanwhile, we
set the loss equilibrium coefficients A; as 0.5, A2 as 0.3, and A3 as 0.2. For the
data selection rate r, we set it to 0.5. For the objective alignment layers M, we
set M to 3 and 6 for 3-layer and 6-layer students, respectively. All experiments
are repeated five times, and we report the average results over five runs with
different seeds.

4.4 Evaluation Metrics

Following prior work [1], we report the F1 score for MRPC, and we use accuracy
as the evaluation metric for other tasks.

4.5 Performance Comparison

Table 3 shows the performance comparison with baselines on the text classifica-
tion tasks. We draw the following observations from the table:

(1) DeKD performs the best on all the text classification tasks. The reason
is that DeKD not only considers efficient learning of the student at the data
level, but also further improves the distillation performance from the model and
objective levels. In general, the classification accuracy of DeKD is from 0.34% to
19.44% greater than the results of the best competitor. None of these baselines,
with the exception of DeKD, can simultaneously stand out across all tasks.

(2) The results of traditional KD (Vanilla KD), intermediate representations-
based KD (BERT-PKD), and the distillation methods considering multiple teach-
ers (DFA, CFL, UHC, MUKI, and KSM) are all consistent with our expectations.
As the conventional distillation method does not employ any additional super-
vision signals or intermediate representations, it performs poorly on most tasks.
However, the method of combining intermediate layer information exceeds the
original distillation method. The reason is that the method based on interme-
diate representations encourages the student model to extract knowledge from
previous layers of the teacher model rather than learning parameters from the
last layer of the teacher model. In fact, this demonstrates that the student can
gain incremental knowledge by learning multiple intermediate layers.

(3) Compared with KSM, the performances of DFA, CFL, UHC, and MUKI
are not satisfactory. Although DFA uses additional features to align objectives,
it cannot achieve better results. This is due to the instability of feature-aligned
supervision, and teacher features are fine-tuned to specifically target different
semantic classes. CFL can learn a multitalented and lightweight student model
capable of mastering the integration knowledge of heterogeneous teachers, but
it suffers from the same issue as DFA in that the supervision based on feature
alignments is unstable. The performance of UHC exceeds that of DFA and CFL,
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but is inferior to MUKI and KSM. This demonstrates a potential supervision
conflict as UHC matches the student output independently to that of teach-
ers, thus limiting its generalizability across datasets. To summarize, the above
results demonstrate that simply combining different supervision signals is inef-
fective. However, our DeKD designs a more efficient framework that significantly
improves the distillation performance of the student model by selecting infor-
mative data, assisting the student’s evolution with the teacher assistant, and
dynamically selecting alignment signals.

Table 4. Ablation study on MRPC, SST-2, and IMDb tasks.

Method MRPC SST-2 IMDb
DeKD 87.48 89.91 86.12
w/o DS 86.84 87.84 85.52
w/o TA 86.74 87.61 85.50
w/o DOA 86.33 87.38 85.18

4.6 Ablation Study

In order to evaluate the contributions of different parts of DeKD, we design
the ablation experiments. Experimental results are shown in Table 4. Due to
space constraints, we show only the results on the MRPC, SST-2, and IMDb
datasets. Other results are similar, so we omit them. We design three different
configurations: w/o DS, w/o TA, and w/o DOA.

w/o DS. This configuration removes the entropy-based selection strategy.
Compared with DeKD, the overall performance drops without DS, implying that
selecting informative instances can reduce repetitive learning caused by data
redundancy. This entropy-based selection strategy is capable of making better
use of limited queries.

w/o TA. Without TA, the model performance declines on the three tasks.
This is because the auxiliary model, i.e., the teacher assistant, becomes a boost-
ing factor in the evolution of the student model. Therefore, the performance of
this configuration is inferior to that of DeKD, demonstrating that the addition
of the teacher assistant can bridge the capacity gap between the student and the
teacher.

w/o DOA. When dynamic objective alignment is not taken into account,
this configuration performs worse than DeKD. This implies that learning via
dynamically aligning middle representations can help the student quickly under-
stand tasks, thus improving prediction confidence.

To summarize, DeKD is superior to the first three configurations, which shows
that all the components together can improve the performance of the student
model.
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Table 5. The mean, standard deviation, and statistically significant T-test (p-Value)
of five different runs on SST-2 and IMDb. The superscripts 1, 2, and 3 respectively
denote statistically significant improvements over UHC, MUKI, and KSM.

SST-2 Mean Stdev

UHC 85.74, 83.61, 84.22, 82.37, 85.69 84.33 1.281
MUKI  86.29, 82.16, 85.34, 84.68, 86.12 84.92 1.495
KSM 89.21, 89.01, 88.36, 89.18, 88.27 88.81 0.408
Ours?3 89.91, 89.88, 89.65, 89.17, 88.96 89.51 0.383

IMDb Mean Stdev

UHC 83.66, 81.21, 83.38, 82.93, 82.07 82.65 0.899
MUKI  84.51, 83.23, 84.47, 83.13, 82.98 83.66 0.679
KSM 85.31, 85.26, 84.93, 85.28, 84.97 85.15 0.165
Oursh?3 86.12, 86.08, 86.02, 85.85, 85.93 86.00 0.099

4.7 Model Analysis

Variance Analysis. Taking the 6-layer student setup as an example, we carry
out five experiments with different seeds and calculate their mean and standard
deviation (Stdev). Moreover, we also conduct a two-sided statistically significant
t-test (p-value) with a threshold of 0.05 and compare the baseline methods with
our DeKD method. We report the experimental results in Table 5. As shown,
our method is statistically significant compared to baselines.

Data Selection Strategies. In addition to the scaled entropy-based (SE) se-
lection strategy, we also implement three other common strategies to compute
the uncertainty score U, for each instance x:

Random, which randomly selects N x r instances as the baseline to evaluate
the effectiveness of selection strategies.

Least-Confidence (LC), which indicates the uncertainty of the model to
the predicted class § = arg max, P(y | z):

U, =1 P(j | ). (11)

Margin, which is calculated as the margin between the first and second most
probable classes, y; and y3:

Up =Py [2) = Py | ). (12)
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Fig. 2. The average accuracy of five experiments with four strategies under different
selection ratios.
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Fig. 3. The performance of the student models with 3 and 6 layers under different
configurations of teacher assistants.

As shown in Fig. 2, we change the selection ratio r to check the results of
different strategies on the Emotion dataset. The results on all datasets show a
consistent trend, so one of them is selected for analysis.

From Fig. 2, we can observe that: (1) The selection strategy based on the
entropy of student prediction can make better use of limited queries, which is
better than other strategies. (2) We can use approximately 50% of the training
data to achieve satisfactory performance. This shows that about 50% of the data
can cover the training data well, so learning from these instances can sufficiently
train the student model. It is helpful to choose informative instances for reducing
repetitive learning caused by data redundancy. (3) There is a trade-off between
performance and training cost, i.e., increasing the selection ratio usually improves
the performance of the student model but leads to a greater training cost.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:
DOIJ10.1007/978-3-031-63749-0_13 |



https://dx.doi.org/10.1007/978-3-031-63749-0_13
https://dx.doi.org/10.1007/978-3-031-63749-0_13

14 Y. Xu et al.

Layers of Teacher Assistant. According to the previous work [25], we make
two configurations for the student model: 3-layer and 6-layer. We explore the
influence of different layers of teacher assistants on the student model under
these two configurations. For the MRPC task, the number of layers of teacher
assistants ranges from 4 to 11 for the 3-layer student, while the number of layers
of teacher assistants ranges from 7 to 11 for the 6-layer student. The teacher
assistants are distilled from the 12-layer teacher. In Fig. 3 (a), when the number
of teacher assistant layers is 6, the student performs best. In Fig. 3 (b), when the
number of teacher assistant layers is 9, the performance of the student is at its
peak. It demonstrates that the teacher assistant model, which sits in the middle
of the number of layers between the teacher and student models, can solve the
problem of the small student not being able to match the capacity of the large
teacher.

5 Conclusion

In this paper, we address the issues of repeated learning of instances and the
gap between the student and teacher models in knowledge distillation. We put
forward an entropy-based selection strategy, and then, through the teacher assis-
tant and dynamic supervision alignment, we can improve the learning efficiency
and distillation performance as the student model evolves. Extensive experimen-
tal results on the benchmark datasets demonstrate that our proposed method
achieves consistent improvements over the state-of-the-art approaches. In the
future, we will explore deploying our method on mobile devices for efficient in-
ference.
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Development Program of China (No. 2023YFC3303800).
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