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Abstract. One of the consequences of climate change is the increase
in forest fires around the world. In order to act quickly when this type
of natural disaster occurs, it is important to have simulation tools that
allow a better approximation of the evolution of the fire, especially in
Wildland Urban Interface (WUI) areas. Most forest fire propagation sim-
ulators tend to represent the perimeter of the fire in a polygonal way,
which often does not allow us to capture the real evolution of the fire
in complex environments, both at the terrain and vegetation levels. In
this work, we focus on Elliptical Wave Propagation (EWP) based sim-
ulators, which represent the perimeter of the fire with a set of points
connected to each other by straight lines. When the perimeter grows
and new points must be added, the interpolation method used is lin-
ear interpolation. This system generates unrealistic shapes of fires. In
this work, an interpolation method leveraging Composite Bézier Curves
(CBC ) is proposed to generate fire evolution shapes in a more realis-
tic way. The proposed method has been incorporated into FARSITE, a
well-known EWP-based forest fire spread simulator. Both interpolation
methods have been applied to ideal scenarios and a real case. The results
show that the proposed interpolation method (CBC ) is capable of gen-
erating more realistic fire shapes and, in addition, enables the simulator
the ability to better simulate the spread of fire in WUI zones.

Keywords: Interpolation · Forest Fire perimeter · Bezier curve.

1 Introduction

The role of computational science in addressing environmental challenges such
as wildfires, is increasingly recognised as part of the broader pursuit of sus-
tainability. Wildfires are increasingly recognised as a major environmental and
societal challenge. The frequency and intensity of these events have risen notably
in recent years, leading to significant ecological, economic, and social impacts.
Climate change, marked by rising temperatures and changing precipitation pat-
terns, has exacerbated the conditions that lead to wildfires [10, 8, 13]. Effective

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_11

https://dx.doi.org/10.1007/978-3-031-63749-0_11
https://dx.doi.org/10.1007/978-3-031-63749-0_11


2 I. González et al.

wildfire management, facilitated by advanced simulation tools, contributes sig-
nificantly to the safety and well-being of societies, as well as to the protection and
conservation of natural ecosystems. The accuracy and realism of fire behaviour
simulations are crucial for this effective wildfire management. Traditional simu-
lation methods, while useful, often lack the fine scale detail necessary to capture
the complex nature of wildfire spread. This gap in simulation fidelity can lead
to challenges in predicting fire behaviour, especially in heterogeneous landscapes
with variable fuel and weather conditions.

In response to this challenge, numerous mathematical models and simulators
have been developed in the last decades [6, 7], which are broadly categorized
based on their spread strategy into three types: Cellular Automata (CA), Ellip-
tical Wave Propagation (EWP) and Level Set Method (LSM). Fire spread in the
CA models is performed based on a grid of cells, where the state of each cell
could be either burned or unburned [1]. EWP models treat the fire perimeter as
a discretized curve (set of points) offering detailed and dynamic representations
of fire spread [2]. Finally, LSM employs the Hamilton-Jacobi equation to define
the fire front implicitly through a level-set function [4, 11].

Focusing on the realism of the simulations provided by the simulators that
use CA and EWP as fire front propagation strategies, a relevant issue can be
found, the polygonal shape of the results. Both, CA and EWP methods tend to
generate fire perimeters with polygonal shapes instead of curved shapes. This
issue is not so notable in LSM since this approach does not discretize the fire
front. The reason for this behavior in the case of CA-based simulators, is the use
of cells as a propagation unit, while in EWP -based models, the main problem
lies in the interpolation method used. As the forest fire evolves, new points must
be added to the representation of the fire perimeter to keep the resolution of
the simulation limited by a predetermined value. This point addition is done
through linear interpolation, which generates straight shapes instead of smooth
curves.

The main objective of this work is to emulate the dynamic and curved char-
acteristics inherent in the spread of a forest fire by applying Composite Bézier
Curves. This concept has been widely applied in the area of computing graphics
but, in this paper, we are transferring its applicability to a completely different
research field. The proposed methodology uses an interpolation technique that
strategically introduces points on the front obtained from the composition of
the generated curves. The resulting addition of points gracefully articulates a
more realistic depiction of the fire’s boundary. What distinguishes this approach
from traditional polygonal methods is that it allows to capture the authen-
tic, non-polygonal behavior exhibited by a wildfire. Furthermore, the proposed
methodology does not imply extra computing time since it has been designed to
have the same complexity as current linear interpolations (O(n)). In order to an-
alyze the behaviour of this proposal when simulating the behaviour of real forest
fires in complex scenarios, we have used FARSITE as a simulation framework.
FARSITE has been chosen for being the most widely used forest fire simulator
that incorporates the EWP spread method. The proposed interpolation method

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_11

https://dx.doi.org/10.1007/978-3-031-63749-0_11
https://dx.doi.org/10.1007/978-3-031-63749-0_11


Enhancing the realism of wildfire simulation using Composite Bézier curves 3

has been codified in FARSITE changing its linear interpolation method to the
proposed one but keeping the rest of the code intact. FARSITE has been used
to simulate the evolution of a real wildfire using both interpolation methods
separately. The results show that the proposed method not only provides more
realistic forest fire perimeters, but also enables the simulator the ability to spread
the fire through areas that would not otherwise be reached.

The rest of the paper is organized as follows. In section 2 a basic description
of FARSITE is introduced. Section 3 includes the description of the proposed
CBC interpolation method. The experimental study is reported in section 4 and,
finally, section 5 summarises the main conclusions of this work.

2 Forest Fire Spread Modelling

Modelling and understanding the behaviour of wildfire is a complex process
that involves a lot of different fields (physics, forestry, chemistry, etc). However,
with in special conditions (flat terrain, no wind and homogeneous fuel), the
propagation of the fire front can be simplified by a circle [12]. Other well known
special (ideal) cases are those with either constant slope or, flat terrain with
constant wind speed and direction. Assuming these conditions, the propagation
of the fire front describes an ellipse [3]. This behaviour is shown in Figure 1
where the fire evolution in controlled laboratory experiments are depicted [12].

Fig. 1: Elliptical behaviour observed in laboratory experiments [12].
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FARSITE is a widely employed simulator that adopts Elliptical Wave Prop-
agation as its primary method for modelling fire spread across landscapes. Com-
bining this propagation scheme with the Huygens’ principle, the fundamental
framework of FARSITE’s methodology is obtained. FARSITE works iteratively
by modifying the location of the fire front in time steps of preset duration. In each
iteration, FARSITE dynamically updates the fire front by strategically placing
points along elliptical waves. This adaptability allows the simulator to navigate
diverse landscapes, capturing the nuanced path and intensity of the spreading
fire. The Huygens’ principle, a cornerstone of FARSITE’s approach, involves
points along the elliptical wavefront acting as sources of secondary waves. This
collective influence shapes the evolving wavefront, enhancing the precision of fire
spread predictions. Figure 2 shows a basic scheme of how the EWP method is
used to spread an initial fire front to an evolved fire perimeter.

Fig. 2: Basic scheme of the Elliptical Wave Propagation (EWP) approach.

However, despite its robust iterative dynamics, FARSITE encounters chal-
lenges related to the EWP. As the fire progresses, the gradual drift of points
necessitate careful consideration. Maintaining simulation accuracy and resolu-
tion becomes crucial, additionally, the autonomy in the spread of each point
contributes to a lack of knowledge regarding previously burned areas. The de-
centralized nature of point propagation creates a potential gap in understanding
the fire’s history, necessitating innovative solutions to overcome this information
limitation and enhance the overall accuracy of the simulation.

In facing the lack of knowledge regarding previously burned area, FARSITE
introduces the usage of a normal vector to the perimeter, which is crucial in
guiding the fire spread. The normal vector of a given point is computed based
on its surrounding points and aligned with the existing momentum. Figure 3
illustrates schematically how the normal vectors for two different points (grey
and red coloured) are obtained from its neighbouring points. To evaluate the
direction of the normal vector for both points, the perpendicular direction of the
segment that joins the corresponding two neighbouring points is used. Therefore,
the location of the two neighbours of a given point have a direct impact in the
normal vector direction. Later we will return to this characteristic since, as we
will see, it is a relevant point in the proposal of this work.
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Fig. 3: Normal vector for two points (grey and red) when interpolation has been
done linearly.

To address spatial accuracy, FARSITE introduces a rediscretization pro-
cess to counteract the gradual point density drift. FARSITE incorporates the
perimeter resolution (PR) parameter that defines the maximum distance be-
tween two consecutive points within the fire front, determining when a new point
should be added to maintain simulation resolution limited by the PR value. The
method employed by FARSITE to introduce new points along the elliptical wave-
front during the rediscretization stage is linear interpolation. This technique adds
a new perimeter point at the midpoint along the segment connecting two exist-
ing points on the wavefront when required. While this rediscretization strategy
effectively addresses spatial accuracy concerns, it introduces a challenge related
to the Huygens’ principle. As new points are inserted within the area enclosed
by the elliptical wavefront, the smoothness or curvature of the wavefront is dis-
rupted. This disruption not only impacts the smoothness of the wavefront but
also has implications for the computation of the normal vector for the neighbour
points, so this disruption propagates throughout the iterations. Later on, in the
section devoted to explain the experimental study carried out in this work, a
deep analysis of this issue is done.

3 Methodology

In this section, a detailed exploration of the mathematical intricacies behind
Composite Bézier Curves (CBC for short) is introduced. The main emphasis
lies not only in understanding their application but also in presenting an effi-
cient computational approach. The proposed CBC method exhibits a complexity
of O(n), ensuring that the computational time aligns with the basic linear in-
terpolation akin to what FARSITE uses. This strategic approach allows us to
maintain computational efficiency while enhancing the simulation’s fidelity in
capturing the nuanced behavior of a forest fire through Bézier curves.

3.1 Composite Bézier Curves

The foundation of the CBC method lies in the composition of Bézier curves.
The Bézier curves under consideration are cubic Bézier curves, defined based on
four points, as it is illustrated in Figure 4. Two of these points (P0 and P1) act
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as the starting and ending points of the curve, while the other two (σ0 and ρ0)
serve as anchor points that influence the curve’s shape and directionality.

Fig. 4: Representation of a Cubic Bézier Curve.

The Cubic Bézier curve (B) depicted in Figure 4 has the following generic
formula:

B(t) = (1− t)3 · P0 + 3t(1− t)2 · σ0 + 3t2(1− t) · ρ0 + t3 · P1

0 ≤ t ≤ 1 ∈ R
(1)

In the context of Composite Bézier Curves, each curve is defined by a pair
of points from the fire perimeter — marking the start and end — coupled with
two anchor points yet to be determined. The task at hand involves determining
the anchor points, a process we will elucidate later in this section. With as many
curves as there are points on the fire perimeter, the general formulation for each
Bézier curve (Γi) describing the perimeter is expressed through Equation (2).

Γi(t) = (1− t)3 · Pi + 3t(1− t)2 · σi + 3t2(1− t) · ρi + t3 · Pi+1

i ∈ {0, . . . , n− 1}, 0 ≤ t ≤ 1 ∈ R
(2)

In Equation (2), σi and ρi represent the anchor points to be determined,
Pi denotes the i-th point on the perimeter, Pi+1 is the following point clockwise
for all curves, and n is the number of points in the perimeter. As the perimeter
forms a closed shape, the point following the last perimeter point seamlessly
connects to the first point of the perimeter, so Pn is P0.

The challenge is to find the σi and ρi for each curve in a way that leaves
us with integrated curves and smooth composition. As we currently have 2n
unknowns factors, we need to produce 2n equations to obtain a compatible
determined system. Furthermore, since we want the composition to be differen-
tiable for smoothness, we propose it to be twice differentiable to obtain the 2n
equations. This differentiability condition is expressed in Equations (3) and (4).

Γ
′

i (1) = Γ
′

i+1(0), i ∈ {0, . . . , n− 1} (3)
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Γ
′′

i (1) = Γ
′′

i+1(0), i ∈ {0, . . . , n− 1} (4)

In Equations (3) and (4), it should be noted that since we are working with
a circular system, Γn is Γ0, as it will happen elsewhere in our methodology.

Using the definition of Γi(t) from Equation (2), we can calculate its first and
second derivatives. By using these definitions and Equations (3) and (4), we can
derive Equations (5) and (6).

Γ
′

i (1) = Γ
′

i+1(0) ⇐⇒ σi+1 + ρi = 2Pi+1 (5)

Γ
′′

i (1) = Γ
′′

i+1(0) ⇐⇒ σi + 2σi+1 = 2ρi + ρi+1 (6)

Therefore, we obtain the system of equations in Equation (7) with 2n un-
knowns and 2n equations.{

σi+1 + ρi = 2Pi+1, i ∈ {0, . . . , n− 1}
σi + 2σi+1 = 2ρi + ρi+1, i ∈ {0, . . . , n− 1}

(7)

Applying the substitution method, we obtain a system containing only n
unknowns, which are the σi with i ∈ {0, . . . , n− 1}, and with n equations.

{
σi−1 + 4σi+ σi+1 = 2(2Pi + Pi+1), i ∈ {0, . . . , n− 1} (8)

It is essential to note that this system is a circular tridiagonal system, and
for this reason, it can be expressed in the following generic form of Equation (9).
We express it in this generic form because the resolution methodology presented
below is expressed using this form, as it can be used for all circular tridiagonal
systems.

{
bi · σi−1 + ai · σi+ ci · σi+1 = ri, i ∈ {0, . . . , n− 1} (9)

Based on the methodology of [9], which uses Gaussian elimination and a iter-
ative reparametrization, we obtain an equivalent system. The reparametrization
used starts with the initial parameters in Equation (10),



α0 =
−1

a0
β0 = b1α0

δ0 = b0

ϵ0 = −cn−1α0

y0 = r0

(10)

Then, we compute the iterative parameters, based on the previous ones,
in Equation (11).
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αi =
−1

ai + βi−1ci−1

βi = bi+1αi

δi = βi−1δi−1 i ∈ {1, . . . , n− 2}
ϵi = ϵi−1ci−1αi

yi = ri + yi−1βi−1

(11)

Finally, we calculate the final parameters of Equation (12).
αn−1 = an−1 + βn−2(γn−2 + cn−2)− ϵn−2cn−2 −

n−2∑
j=0

ϵjγj

yn−1 = rn−1 + βn−2yn−2 −
n−2∑
j=0

ϵjyj

(12)

Therefore, we obtain the following system of equations equivalent to Equa-
tion (9) using the described reparametrization:


σi+−ciαi · σi+1 − γiαiσn−1 = −yiαi, i ∈ {0, . . . , n− 3}

σn−2 − αn−2(cn−2 + γn−2)σn−1 = −yn−2αn−2

αn−1σn−1 = yn−1

(13)

Iterative starting from σn−1, we can solve the system, and the solution is
given by Equation (14).σn−1 =

yn−1

αn−1

σi = (ciσi+1 − yi + γiσn−1)αi i ∈ {n− 2, . . . , 0}
(14)

Finally, using Equation (5), we also obtain the variables ρi. After solving the
system and obtaining the variables σi and ρi, we have determined the curves that
constitute the Composite Bézier Curves. These curves smoothly and cohesively
describe and follow the fire perimeter, accurately capturing the dynamics and
directionality of the fire spread.

To exemplify how this methodology works, a toy example is used. Figure 5a
shows a set of points (grey points) that represent a certain fire perimeter just
before the rediscretization process starts. The points have been represented by
joining them with a line just to clarify the shape they form. Figure 5b depicts the
two set of points that represent the fire front once the two interpolation meth-
ods have been applied. More precisely, the red points (red perimeter) correspond
to the points obtained when using FARSITE’s linear interpolation, whereas the
green points (green perimeter) are the points obtained with the proposed CBC
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(a) Original perimenter points. (b) Including interpolated points.

(c) Normal vectors.

Fig. 5: Original perimeter points before any interpolation (grey) (a). Perimenter
including interpolated points, the green ones corresponds to the interpolation
done with the proposed method CBC and the red ones correspond to the points
obtained applying the linear interpolation (b). Normal vectors of all perimeter
points (c).

Fig. 6: Normal vectors for interpolated points (linear interpolation in red and
CBC method in green) and original perimeter points before interpolation in
grey
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interpolation method. As it can be observed, the red perimeter exhibits a polyg-
onal shape, meanwhile the green perimeter draws a smoother curve shape. Fur-
thermore, if we observe the framed area in Figure 5b in more detail, we can
see that the interpolation process, in the case of the standard method, only in-
troduces one point (red) between the two points of the original perimeter (grey
points), while the CBC method adds two points (green). This example highlights
that the interpolation used by FARSITE only adds one point in the center of
the segment that joins the perimeter points between which it is detected that
points need to be added. This process is carried out in this way even if the
distance between points exceeds PR. However, the proposed CBC interpolation
adds to the perimeter all required extra points to keep the perimeter resolution
bounded by PR. Figure 5c shows the normal vectors for all points. Although at
first glance it seems that the normal vectors for the two interpolation methods
coincide, if we zoom in the framed area of Figure 5c (Figure 6), we can see that
there is a slight difference between them. This difference is more pronounced
in the grey points, that is, in the perimeter points before the rediscretization
stage (interpolation process) starts. As it has been previously mentioned, since
the two interpolation methods add points to the perimeter at different locations,
the resulting neighbouring points for a given grey point could be very different.
Figure 6 depicts this situation. In this figure, the two normal vector obtained
when the interpolation method used is the linear one (red points) and the CBC
method is applied (green point) are shown. As it can be observed, the obtained
normal vectors, especially for the grey point, are quite different since the two
neighbouring points in each case are in locations significantly different. This dif-
ference will propagate at each simulation step leading to relevant differences at
the end of the complete simulations process. This issue will be later on analysed
in this work, in the discussion of the real case.

4 Experimental study and Results

In this section, the experimental study carried out is reported. In order to analyze
the behaviour of the proposed method, we have done two kind of experiments.
On the one hand, ideal scenarios where most of the environmental conditions
are quite controlled have been simulated to determine the effectiveness of the
proposed interpolation method against the current basic approach. Being able
to control variables such as wind and terrain allows the study to focus on the
behavior of fire spread. On the other hand, a real wildfire scenario has been sim-
ulated to test the CBC methodology under complex scenarios. the application
of these methods to a real wildfire event is crucial for assessing their practical
utility and accuracy in replicating complex fire dynamics. This comparison aims
to reveal not only how each method performs in theory but also their effective-
ness in actual wildfire situations. In addition, the real wildfire event introduces
complexities absent in ideal scenarios, presenting an opportunity to assess the
practical utility of the CBC method under dynamic and heterogeneous condi-
tions.
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4.1 Ideal Cases

To test the effectiveness of the proposed rediscretization method within the con-
text of the FARSITE forest fire spread simulator, a set of experiments based
on ideal cases have been designed. Ideal cases are those that the relevant en-
vironment conditions (slope, wind and vegetation) are controlled and constant.
That is, for example, the basic ideal case consists of simulating the spread of
a forest fire in a completely flat terrain, with homogeneous vegetation and no
wind. Under this conditions, it is well known that the evolution of the fire de-
velops in concentric circles [12, 5]. In particular, the results shown in this section
corresponds to this ideal basic case, however, other ideal cases have been tested
such as flat terrain and constant wind, terrain with a constant slope with and
without constant wind and so on. The results of all these experiments exhibit
similar behaviour to the basic one, therefore, we have chosen this case to com-
pare the linear interpolation method used by FARSITE with running FARSITE
including the proposed CBC interpolation method.

FARSITE exhibits the capability to maintain a circle-like fire shape when
simulating the basic ideal case. However, as it has been previously mentioned,
the current rediscretization method included in FARSITE adds new points at the
midpoint between two neighbouring points when required. This method could
locally alter the elliptical or circular shape of the fire perimeter turning it into
a polygonal shape. To show such a behaviour, the ideal case has been simulated
using, on the one hand, FARSITE with its standard linear interpolation method
and, on the other hand, FARSITE has been executed by changing the linear
interpolation to the proposed CBC interpolation method. Figure 7a shows the
simulations results when using linear interpolations, meanwhile Figure 7b depicts
the evolution of the fire when using CBC interpolation approach. The circular
fire spread pattern, inherent to FARSITE’s underlying principles, are faithfully
reproduced by both methods. Although at first glance, the results obtained when
simulating the basic ideal case seem identical, if we analyze both figures in more
detail a subtle difference can be seen as it can be observed in Figure 7c. The
CBC method introduces refinements, optimizing the representation of circular
fire spread generating smoother perimeters. These results corroborate that the
new interpolation methodology is capable of reproducing the circular evolution of
the spread of a fire in an ideal scenario. Furthermore, it is capable of eliminating
the polygonal appearance of the perimeters generated by FARSITE with its
basic interpolation implementation.

4.2 Real Case

This section is devoted to study the results obtained in terms of realism of the
fire perimeter, when applying both interpolation methods, the original scheme
included in FARSITE and the proposal method (CBC ) in a real wildfire. The
study case corresponds to a forest fire that took place in Pont de Vilomara in
Catalonia (north-east of Spain). This forest fire started on July 17, 2022, at 13:04
and it was completely controlled on July 18 at 00:20. It rapidly burnt around 14
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(a) Linear Interpolation. (b) Composite Bézier Curves.

(c) Fire spread comparison.

Fig. 7: Basic ideal case propagation results when linear interpolation (a) and CBC
interpolation (b) are used in FARSITE. Comparison of the results obtained by
both methods (c).

hectares during the first 15 minutes, reaching 100 hectares in less than one hour.
The final burned area was 1, 697 ha. This final area is shown in Figure 8 with
the orange shape. The yellow shape corresponds to one intermediate perimeter,
which has been used as the initial perimeter for the experiments reported in this
section. This intermediate perimeter corresponds to the area burned by the fire
until July 17, 2022 at 16:30. This scenario has been chosen for being character-
ized by intricate terrain and a complex Wildland-Urban Interface (WUI). This
scenario allows to introduce complexities that were absent in the ideal settings,
aiming to replicate scenarios frequently encountered in wildfire management,
where urban and wildland areas intersect, contributing to heterogeneous land-
scapes. Figure 9 shows the simulations results in terms of area burned when exe-
cuting FARSITE including its basic linear interpolation scheme (Figure 9a) and
including the CBC method (Figure 9b). As it can be observed, the CBC method
exhibits a better capacity to represent the behavior of wildfires in a more accu-
rate manner, particularly in areas featuring a Wildland-Urban Interface (WUI)
and intricate terrain, like the framed area of the fire. FARSITE method tends to
underestimate fire spread in those contexts, emphasizing the limitations of con-
ventional linear interpolation in capturing the nuances of complex fire dynamics.
The framed area within Figure 9 is characterised for its terrain complexity. The
curve perimeter description allows the CBC method to recognize accelerated fire
propagation, providing a more accurate representation of fire behavior in this
area. On the contrary, linear interpolation method fails to capture this nuanced
behavior, resulting in a discrepancy in the representation of fire spread.
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Fig. 8: Initial perimeter (yellow shape) an final burned area (orange shape) of
the Pont de Vilomara fire.

(a) (b)

Fig. 9: Final simulated burned area using linear interpolation (red shape) (a)
and final simulated burned area using the proposed CBS method (green shape)
(b). The grey shape corresponds to the final real burned area

The detailed visual analysis of this framed area (Figure 10) pinpoints spe-
cific areas where the CBC method excels during the rediscretization stage. The
impact of the CBC method on the normal vector that describes the inertial di-
rection of the fire becomes evident. The curve perimeter description afforded by
CBC enables the simulator to discern faster fire propagation in strategic areas,
a subtlety not effectively captured by the original method. This knowledge, in-
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troduced during rediscretization, propagates between iterations, illustrating the
significant influence of the CBC method on normal vectors and subsequent fire
spread.

Fig. 10: Detailed aspects of the perimeter evolution when applying linear inter-
polation (red) and the CBC method (green)

5 Conclusions

In this work, an alternative interpolation method for rediscretizing the front
of a wildfire in EWP -based simulators is proposed. In particular, the proposed
approach is based on Composite Bézier Curves (CBC ), which captures more pre-
cisely the smooth and circle aspect of the forest fire shape than classical linear
interpolation method. The proposed interpolation method has been included in
FARSITE, a well-known EWP -based simulator, in order to compare its perfor-
mance compared to the original linear interpolation scheme. The CBC method
generates fire front that exhibits superior realism compared to the traditional
FARSITE interpolation method. This improvement arises for the CBC method
capacity in capturing intricate fire dynamics, with a particular emphasis on chal-
lenging terrains such as Wildland-Urban Interfaces (WUIs). In these areas, where
urban and wildland environments intersect, accurate simulations are paramount.
The adaptability of CBC ensures a nuanced depiction of fire behavior, allowing
for more effective decision-making in wildfire management and mitigation. The
importance of this precision is underscored in WUIs, where complex landscapes
demand accurate simulations to develop strategies that safeguard both human
settlements and natural ecosystems. The successful integration of CBC marks
a significant step forward in addressing the unique challenges posed by intri-
cate terrains, providing a valuable tool for enhancing the realism and efficacy of
wildfire simulations in complex environments.
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