
Simulating, Visualizing and Playing with de
Sitter and anti de Sitter spacetime

Eryk Kopczyński1[0000−0001−5588−1181]

Institue of Informatics, Institute of Warsaw, Poland erykk@mimuw.edu.pl

Abstract. In this paper we discuss computer simulations of de Sitter
and anti de Sitter spacetimes, which are maximally symmetric, relativis-
tic analogs of non-Euclidean geometries. We present prototype games
played in these spacetimes; such games and visualizations can help the
players gain intuition about these spacetimes. We discuss the technical
challenges in creating such simulations, and discuss the geometric and
relativistic effects that can be witnessed by the players.

Keywords: de Sitter spacetime · relativity · science game.

1 Introduction

Science-based games are games based on a real scientific phenomenon. For exam-
ple, there are games based on special relativity [14,8], quantum mechanics [20],
orbital physics [22], non-Euclidean geometry [24,11,4,25]. Compared to typical
educational games, where the concept explained and the gameplay are not re-
lated, science games take the scientific phenomenon and use it to create interest-
ing gameplay [20]. Other than providing entertainment, science games provide
intuitive unterstanding of difficult science concepts; many of them let the player
perform their own experiments, by including sandbox elements, level editors, or
being open source. Such a better understanding helps young players consider a
scientific career, and also gives ideas for new scientific developments to mature
researchers [9]. Science games require a specialized engine for efficient modelling
and visualization of the given scientific concept; such engines may be later used
for other applications than just games [2].

In this paper, we describe a game (or rather, a collection of two games)
taking place in de Sitter and anti de Sitter spacetimes. These spacetimes could
be seen as relativistic analogs of spherical and hyperbolic geometry. De Sitter
spacetime is of interest as an asymptotic approximation of our universe [16],
and anti-de Sitter spacetime is of interest for its correspondence with conformal
field theory [15]. While many games exist based on special relativity and non-
Euclidean geometry, the unintuitive properties of spacetimes combining these
two concepts seems to be still unexplored.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10


2 E. Kopczyński

Fig. 1. On the left, the {7,3} hyperbolic tessellation in Poincaré disk model. The
Poincaré disk model is conformal: it does not distort small shapes, so all heptagons look
close to regular; however, it distorts scale: all the heptagons shown are of the same size.
On the right, the same scene in HyperRogue viewed from two points. In the Poincaré
model, straight lines are projected as circular arcs orthogonal to the disk boundary;
moving the center shows the player that the walls (orange) are indeed straight lines.

Players can try our prototype game, named Relative Hell, by downloading
the Microsoft Windows binary1. The source code, based on the non-Euclidean
engine RogueViz [12], is also available.

2 Background

Our prototype helps non-experts understand scientific concepts intuitively. In
this section, we provide an intuitive introduction to non-Euclidean geometry
and relativity theory, and explain how games can provide such understanding.

The history of non-Euclidean geometry starts with Euclid’s Elements. This
book has changed teaching geometry by giving it structure: starting with very
basic postulates and axioms, such as the space never ending and being the same
everywhere and in every direction, and continuing with all the more complex
geometric facts known to Euclid, which followed from the postulates and axioms
[5]. However, some geometric facts related to parallel lines did not actually seem
to follow from such basic postulates. For example, if we have two points A1B1

in distance d on a straight line l1 and two points A2B2 in distance d on a
parallel straight line l2, the distance between A1 and A2 should be always the
same as between B1 and B2. Euclid has solved this by declaring (an equivalent
formulation of) this statement as his fifth postulate (or parallel postulate).

Mathematicians have been trying to prove the parallel postulate from the
other postulates, until Lobachevsky and Bolyai have discovered hyperbolic ge-
ometry Hd, which satisfied all Euclid’s postulates except his fifth postulate [5].
(In Hd, d is the number of dimensions.) To explain how the parallel postulate
1 https://zenorogue.itch.io/relative-hell, source code: https://github.com/
zenorogue/hyperrogue/blob/master/rogueviz/ads/ads-game.cpp. Last accessed
April 9, 2024.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

https://zenorogue.itch.io/relative-hell
https://github.com/zenorogue/hyperrogue/blob/master/rogueviz/ads/ads-game.cpp
https://github.com/zenorogue/hyperrogue/blob/master/rogueviz/ads/ads-game.cpp
https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10


Visualizing de Sitter and anti de Sitter spacetime 3

could not be true, imagine drawing great circles on a sphere; such great circles
are an analog of Euclidean lines, however, if we look at two meridians, we dis-
cover that the parallel postulate does not hold. In our three-dimensional world,
great circles are obviously curved; however, we can imagine that our Universe is
actually a hypersphere in four dimensions, and what we perceive as straight lines
is actually great circles on this hypersphere. This is the spherical geometry Sd;
hyperbolic geometry is the opposite of it (while, in spherical geometry, “parallel”
lines converge, in hyperbolic geometry they diverge). While many everyday ob-
jects are spherical, hyperbolic geometry is more difficult to understand; a good
way to obtain intuitive understanding is to play games, aiming to simulate the
experience of a inhabitant of a non-Euclidean world. Games in H2 [24,11,17] typ-
ically display the view in the Poincaré disk model (Figure 1, which is a projection
of hyperbolic plane H2 to a Euclidean disk, centered at the player character’s
position; this lets the player see that straight lines are indeed straight and acting
strangely. There are also immersive visualizations of H3 [18,23,10,11,4].

While the world was originally assumed to be Euclidean, further experiments
have shown this to not to be the case. The Morley-Michelson experiment has
shown that the speed of the light measured by a moving observer is always the
same (independent by the observer’s velocity), which was in conflict with theories
at that time. This was resolved in the theory of special relativity: Euclidean
space and Newton’s notion of time were replaced by Minkowski spacetime; there
was no absolute time – for two observers O1 and O2 meeting at position 0 in
time 0, an event at position x and time t according to O1 would be at position
x′ and t′ according to O2, with both space and time being changed by Lorentz
transformations (x ̸= x′ and t ̸= t′), a bit similar to how spatial rotations change
both x and y coordinates, and causing effects such as contraction of lengths and
dilation of time. Special relativity effects normally require large speed to observe
in the real world, but again, they can be experimented with in games [14,8].
Special relativity could not explain gravity; for this, we need general relativity:
the notion of curved spacetime, similar to the curved space of non-Euclidean
geometry. Furthermore, as explained in Section 3 below, Minkowski spacetime
geometry can be used to provide an elegant model of Hd.

Most existing games and simulations, including non-Euclidean ones, do not
take relativity into account. At every point, they represent the current state of
the simulation (at time t) in the computer memory for all objects using the
chosen internal model of the geometry, and to compute the further states of the
simulation (at times t′ > t), a chosen model of physics is used, usually some
simplification and adaptation of Newtonian physics. Interestingly, while such a
non-relativistic model of Euclidean spacetime obeys the Galilean principle of
relativity (a moving object having no access to external reference point cannot
determine that it is moving), this is no longer the case for non-Euclidean ge-
ometries. For example, in Hd, lines diverge, so a large object moving experiences
apparent centrifugal force. This is the reason why, for example, the flock of boids
in the flocking simulations in RogueViz [12] cannot keep its shape, contrary to a
Euclidean flocking simulation [19]. For a similar reason, HyperRogue [11] could

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10


4 E. Kopczyński

Fig. 2. Relative Hell. ãdS2 is displayed in the Poincaré disk model on the left, and the
Beltrami-Klein disk model in the center. dS2 on the right, in stereographic projection.

not feature large, freely moving objects – the boundary of such an object would
have to move significantly faster than the center, in a curved line, which would
be unintuitive; so while the game does feature some somewhat large creatures
(such as snakes and krakens), they are narrow enough to avoid this problem.

This can be solved by using de Sitter (dSd) and anti-de Sitter (ãdSd) space-
times, which are relativistic analogs of Sd and Hd, respectively. They are sym-
metric under the Lorentz transformations used to simulate the change of velocity,
and therefore, they obey the Galilean principle of relativity. Intuitively, while Hd

and Sd stretch the distances in space, dSd and ãdSd also stretch the time. The
game Relative Hell (Figure 2) lets the player fly a two-dimensional spaceship in
these spacetimes. Due to the nature of these spacetimes, the gameplay is differ-
ent: in dS2, objects are naturally pulled apart, so the goal is to keep close to
the main star while avoiding bullets, as in the bullet hell genre; while in ãdS2,
objects are naturally pulled together, so the whole space is rotating in order
to generate centrifugal force to balance that, and the goal is to shoot, similar
to classic omnidirectional shooters such as Asteroids. The player can also gain
insight into the usual non-Euclidean geometric and relativistic (time dilation,
space contraction) phenomena, such as the exponential expansion of H2, and
time dilation and Lorentz contraction.

3 Preliminaries

We briefly recall the definitions of basic spaces and spacetimes. For more details,
see, e.g., [1] for hyperbolic geometry, and [7] for dSd and ãdSd.

The Euclidean space of dimension d, Ed, is Rd equipped with the Euclidean
inner product gE(x, y) =

∑
i xiyi. For a vector x ∈ Rd, we use the nota-

tion x[a/i] for the vector x with i-th coordinate replaced by a. In particular,
0[1/i] is the point whose i-th coordinate is 1 and the other coordinates are 0.
Our Euclidean inner product defines the distance between points: dE(x, y) =√
gE(x− y, x− y). The length of a differentiable curve γ : [a, b] → Ed can

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10


Visualizing de Sitter and anti de Sitter spacetime 5

be computed as
∫ b

a

√
gE(γ̇(t), γ̇(t))dt; note that dE(x, y) is also the length of

the shortest curve from x to y. Orientation-preserving isometries of the Eu-
clidean space are generated by translations T a

i (x) = x[xi + a/i] and rotations
Rα

i,j(x) = x[xi cosα + xj sinα/i][xj cosα − xi sinα/j] for i ̸= j. Isometries pre-
serve gE , and thus distances and curve lengths. The basic translations and rota-
tions can be composed to obtain other isometries. Isometries of Ed correspond
to looking at Ed from another frame of reference.

In video games and computer graphics, it is convenient to use the homoge-
neous coordinates, that is, Rd+1, where the extra (d+1)-th coordinate is always
equal to 1. This method lets us represent translations and rotations as matrices.

The spherical space (sphere) of dimension d, Sd, is Ed+1 restricted to {x :
gE(x, x) = 1}. (For convenience we consider only spheres of radius 1 here.)
The distance dS(x, y) between two points x, y ∈ Sd is the length of the short-
est curve (geodesic) connecting them on the sphere, c : [a, b] → Sd; we have
dS(x, y) = arccos(gE(x, y)). Orientation-preserving isometries of the sphere are
generated by Rα

i,j (while in the Euclidean space we needed the extra coordinate
for translations, in Sd we can instead just use the one extra coordinate we al-
ready have). A sphere is maximally symmetric: any isometry of the underlying
Ed+1 that maps 0 to 0 maps the sphere to itself.

A signature is a σ ∈ {−1,+1}d; we will drop the 1 and just write the signs,
for example (+,+,+,−); if a sign repeats, we use an exponent, for example
(+3,−). The pseudo-Euclidean spacetime of signature σ, Eσ, is Rd equipped
with the inner product gσ(x, y) =

∑
i σixiyi. In this paper, coordinates xi with

σi = 1 correspond to space dimensions, and coordinates with σi = −1 correspond
to time dimensions. Positive values of gσ(v, v) correspond to space-like intervals,
and negative values correspond to time-like intervals. A curve is space-like if the
integral in equation (3) is well-defined (that is, the value under the square root
is always non-negative), and time-like if this value is always non-positive. The
proper time of a time-like curve γ is defined as

∫ b

a

√
−gE(γ̇(t), γ̇(t))dt.

In special relativity, our spacetime is modelled as a pseudo-Euclidean space of
signature (+,+,+,−); the fourth coordinate corresponds to time, and the units
of time and distance are chosen so that Einstein’s constant c equals 1. Isome-
tries of pseudo-Euclidean spacetime are similar, but for σ(i) ̸= σ(j) we replace
rotations Rα

i,j by Lorentz boosts Lα
i,j(x) = x[xi coshα + xj sinhα/i][xj coshα +

xi sinhα/j]. The parameter α is called rapidity ; in spacetimes with 1 time co-
ordinate, Lorentz boosts correspond to changing the velocity of our frame of
reference. Objects generally move along time-like curves; Proper time is inter-
preted as the time measured by a clock, or intuitively felt by a sentient creature,
moving along such a curve. Time-like geodesics have the longest possible proper
time. While the relative speed of moving objects tanhα is bounded by c = 1, the
rapidity is not bounded. The interaction of space and time coordinates causes
well-known relativistic effects such as Lorentz contraction and dilation of time.
The set of points connected to v with time-like geodesics γ such that the time co-
ordinate of γ(t) is increasing on is called the future light cone of v, and the set of
points connected with time-descreasing time-like geodesics is the past light cone.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10


6 E. Kopczyński

These light cones are preserved when we apply the isometries of Eσ that keep
v. The other points are neither in the future or the past, but rather elsewhere
– their time coordinate may be greater or smaller than the time coordinate of
v, depending on the chosen isometry. What happens at v causally depends only
on the spacetime events in the past light cone of v, and may affect only the
spacetime events in the future light cone of v.

The hyperbolic space of dimension d, Hd, is Eσ for σ = (+d,−) restricted
to {x : gσ(x, x) = −1, xd+1 > 0}. This is the Minkowski hyperboloid model of
hyperbolic geometry. This is a space, not a spacetime, that is, all the curves on
Hd are space-like. While hyperbolic geometry is usually taught in the Poincaré
disk model, the Minkowski hyperboloid model is generally easier to understand
(assuming familiarity with Minkowski geometry) and work with computation-
ally because of its similarity to the natural model of the sphere. In particular,
orientation-preserving isometries are generated by rotations Rα

i,j and Lorentz
boosts Lα

i,d+1 (corresponding to translations of Hd), and the distance between
x and y is arcosh(gσ(x, y)). While in special relativity the time coordinate is
usually indexed as x0, in this paper we prefer to make it the last coordinate, for
consistency with the usual indexing of homogeneous coordinates of the Euclidean
space in computer graphics.

Taking z ∈ R, we can project x ∈ Hd to x′ ∈ Rd by x′
i = xi/(xd+1 + z).

This is called the general perspective projection. For z = 1 we get the Poincaré
ball model (also called the Poincaré disk model in 2 dimensions). It is the hy-
perbolic analog of the stereographic projection of the sphere, which uses the
same formula. It is the most popular method of visualizing hyperbolic geometry;
just like the stereographic projection, it is conformal, meaning that the angles
and small shapes are mapped faithfully. Another one is the Beltrami-Klein ball
(disk) model, obtained for z = 0. Beltrami-Klein disk and Poincaré disk are
called models because they are alternative mathematical representations of hy-
perbolic geometry; in this paper, we use only the Minkowski hyperboloid model
for mathematical representation, and the disk models are used as projections
for visual representation. More possible projections exist which are not special
cases of the general perspective projection, for example the azimuthal equidis-
tant projection, which renders the distances and angles from the chosen central
point correctly [17]. Dozens of spherical projections are used in cartography [21];
many of them have hyperbolic analogs, available in the HyperRogue engine [11].

The de Sitter spacetime with d space dimensions and 1 time dimension, dSd,
is Eσ for σ = (+d+1,−) restricted to {x : gσ(x, x) = 1}.

The wrapped anti-de Sitter spacetime with d space dimensions and 1 time
dimension, adSd, is Eσ for σ = (+d,−2) restricted to {x : gσ(x, x) = −1}. Note
that adSd has closed time-like loops, for example, γ(t) = 0[sin t/d+ 1][cos t/d+ 2].
Such closed-time loops are obtained by going around the axis A = {x ∈ Eσ :
∀i ≤ d xi = 0}. Due to the closed time-like loops, adSd has no causal structure
(everything is simultaneously in the past and future of everything else and it-
self). This problem is resolved by taking the universal cover of adSd, i.e., the
point reached by going n ̸= 0 times around the axis A is considered a different

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10


Visualizing de Sitter and anti de Sitter spacetime 7

point in the spacetime. We will call this universal cover the unwrapped anti-de
Sitter spacetime ãdSd, or just anti-de Sitter spacetime for short.

Spacetimes dSd and ãdSd will be discussed in detail in the following sections.
Here, we will only remark that time-like and space-like curves and their lengths
and proper times are defined as above, and that both dSd and ãdSd are maximally
symmetric spacetimes, with their isometries generated from Rα

i,j and Lα
i,j .

4 Simulation of the Anti-de Sitter spacetime

For simplicity, we will start with adSd. When necessary, we fix d = 2.
The point O = 0[1/d+ 2] is considered the origin of the adSd. Every object

b in the simulation, at a specific point of its proper time t, is represented by an
isometry Tb,t of adSd, which maps the coordinates relative to (b, t) to the world
coordinates. Usually, (b, t)-relative coordinates of b itself at time t is O, so the
world coordinates of b at time t are Tb(O). The player controls a ship s, which is
one of the objects in the game. To display an object at world coordinates x on
the screen at time t, we need to map x into ship-relative coordinates, x′ = T−1

s,t x.
The state of the game universe at the current time is a slice of the spacetime.
This slice is S = {x ∈ adSd : xd+1 = 0, xd+2 > 0}, which is isometric to Hd, and
can be rendered e.g. in the Poincaré disk/ball model.

The ship s is controlled in real time by a player, so for every time moment t
displayed in an animation frame, the game has to compute the next frame trans-
form Ts,t+ϵ depending on both Ts,t and player’s decisions. Objects in spacetime
move along timelike geodesics if no force is acting on them. Timelike geodesics in
adSd are generally of form TRt

d+1,d+2O. Thus, if the player does not accelerate
from time t1 to t2, we have Ts,t2 = Ts,t1R

t2−t1
d+1,d+2. Changing the camera speed

in dimension i ∈ {1, . . . , d} corresponds to changing the frame of reference by
multiplying it by Lα

i,d+2. Thus, if the player accelerates, we also need to multiply
the formula for Ts,t2 by Lα

i,d+2 on the right.
One possible objection to displaying the slice S is that the player should not

see the state of the universe at the current time – the ship at time t only knows
the past light cone of Ts,tO. In the current game prototype, we assume that
all the objects other than s behave deterministically, so this is not an issue—
the ship could compute the current state of other objects depending on what it
knows. While displaying S is less immersive, it is useful for understanding how
the spacetime works. (One can change the options to get the actual view.)

The simplest deterministic movement is geodesic movement. Let b ̸= s. The
object b at any given time is not a point, but it is rather a subset X(b) ⊆ S. The
formula Tb,t = Ts,0R

t
d+1,d+2 turns out not to be satisfactory – while the object

b’s origin O moves geodesically, other points in X(b) do not. In d = 2, this issue
can be fixed by using the formula Tb,t = Tb,0R

t
3,4R

t
1,2, which enforces geodesic

movement of every point of b. For short, we denote the isometry Rt
3,4R

t
1,2 with

M t. (It is possible to change the options to also use M t for the ship, but with
such a setting, the game becomes more confusing to the player.) Every object

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10


8 E. Kopczyński

b ̸= s starts its lifetime at some time t1 and ends at time t2; the time t1 may
be −∞ if the object did exist forever, and t2 may depend on player’s actions,
and be ∞ if it is not yet known to be ever destroyed. We can compute Tb,t at
every time t knowing Tb,0. So, to display the point x ∈ X(b) of object b at the
ship’s proper time t, we need to find tb such that xb := T−1

s,t Tb,0M
tbx ∈ S. If

tb ∈ [t1, t2], we apply the chosen projection to xb. We display the point x there.
So far, we have been assuming adSd for simplicity, which does not really work

due to the time-like loops – technically, all of spacetime is in the past, so the
player would be able to perceive the results of the actions they have not per-
formed yet (this is a problem with all games featuring a powerful enough form of
player control and time travel). Another issue is numerical precision: hyperbolic
space (S in our case) is characterized by its exponential growth, which causes
numerical errors to accumulate quickly, and using world coordinates relative to
some fixed origin does not really work when we travel far enough from that
origin. Our solution of these issues is based on the existing implementation of
G̃, the universal cover of Lie group G of orientation-preserving isometries of H2,
also called ˜SL(2,R) or the twisted product of H2 and R. This implementation
is described in paper [13]. The space of isometries of H2 is a three-dimensional
space; the three dimensions correspond to the two dimensions of H2 itself (trans-
lations), plus one extra dimension which corresponds to rotation by some angle
α. In [13], this space of rotations is represented using unit split quaternions (this
is the hyperbolic analog of the fact that isometries of S2 are represented using
quaternions, which is well known in computer graphics). The set of unit split
quaternions corresponds exactly to adSd – the only difference is that in [13] the
dimension corresponding to rotation is considered spacelike, while in adSd it is
timelike; specifically, rotation by angle α corresponds to Mα.

In the universal cover, we consider the isometries whose rotation components
are described by different angles α, β ∈ R to be different, even if they are actually
the same rotation (that is, α−β is a multiple of 2π). We have a natural projection
of the universal cover to the underlying space π : ãdSd → adSd. The space ãdSd

has its origin O′, π(O′) = O. We pick a lift j : adSd → ãdSd such that π ◦ j is
identity; the point j(x) is chosen among the points x′ such that π(x′) = x in a
natural way: the path from x′ to O′ does not cross π−1{x ∈ adS(d) : x1 < 0, x2 =

0}. We reuse the same notation Mα, Rα
i,j and Lα

i,j for the isometries of ãdSd.
Note that the pass-of-time isometry Mα (as well as the underlying Rα

2,3) will now
be different for every α ∈ R, while in adSd we had M2π = M0 = Id. If T is an
isometry of ãdSd, we likewise have uniquely defined π(T ), which is an isometry
of adSd such that π(Tx) = π(T )(π(x)). If T is an isometry of adSd, let j(T ) be
the isometry of ãdSd which takes O to j(T (O)) and such that π(j(T )) = T .

In our simulation engine, the points of G̃, and equivalently ãdSd are repre-
sented as shift points. A shift point (x, h) consists of a point x ∈ adSd and a
shift h ∈ R, and represents x′ = Mhj(x). Note that this representation is not
unique; the canonical representation of x′ is the one in which x3 = 0 and x4 > 0.
Similarly, a isometry T ′ of ãdSd is represented as shift matrices: (T, h), where

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10


Visualizing de Sitter and anti de Sitter spacetime 9

T is an isometry matrix and h is a shift, represents Mhj(T ). The canonical
representation of T ′ is the one in which (TO, h) is canonical.

To avoid the numerical precision issues, we tessellate ãdSd. That is, ãdSd is
subdivided into a number of tiles τ , and every object is described not by a shift
matrix relative to some origin of the whole space, but by a tile τ it lives in, and
a shift matrix (x, d) relative to the center of the tile τ . As previously mentioned,
ãdS2 corresponds to the Lie group of isometries of H2; the centers of our tiles
correspond to the isometries which map the order-3 heptagonal tessellation (Fig-
ure 1) to itself. Knowing the shift matrices transforming the coordinates relative
to tile τ1 into the coordinates relative to adjacent tile τ2, it is straightforward to
compute the coordinates of all the object nearby to the player, relative to the
player. The tessellations themselves can be computed using discrete methods
such as automata theory [6,3], thus avoiding numerical precision issues arising
otherwise when the player makes their ship travel a large distance from the start.

Due to the nature of time-like geodesics in ãdSd, objects appear to move in
circles. This suggests a game design somewhat reminiscent of the classic arcade
multidirectional shooter game Asteroids (which took place in a space with torus
topology, so the objects also did not escape the playing area). The player has to
shoot rocks for resources, such as gold (increasing score), health (used up when
hit by an asteroid), ammo (used up when shot), fuel (used up when accelerating),
and oxygen (used up proportionally to proper time elapsed). These are standard
resources well-known to gamers. One interesting consequence of relativity is that
the player may use up the fuel resource to save a bit of the oxygen resource, since
acceleration can be used to reduce the proper time necessary to reach another
point in the spacetime (similar to the twin paradox). Shooting the missile creates
a new object m (missile); we compute if the worldline of the missile m intersects
the world line of some rock r, and if so, the life of both m and r end at this time,
and we create a collectible resource at the same spacetime event.

The implementation of such a simulation requires us to implement the neces-
sary operations for shift points and shift matrices: compose isometries (multiply
shift matrices), apply isometry to a point (multiply shift matrix by a shift point),
find tb and xb for rendering objects. While in adSd we would just use the well-
known matrix and vector multiplications, in ãdSd these operations are somewhat
more involved due to the necessity of computing shifts correctly (we need to be
careful to obtain the correct shift value h instead of, e.g., h ± 2π). To keep the
paper short, we do not include the full formulas in this paper; they can be found
in the source code of our simulation (file math.cpp).

5 Simulation of the de Sitter spacetime

The general ideas of our de Sitter simulation are similar to the anti-de Sitter
case described in the previous section, so we only list the differences.

The origin is now O = 0[1/d + 1]. The slice corresponding to current time
is S = {x ∈ dSd : xd+2 = 0}. It is isometric to Sd, so it can be rendered e.g. in

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10


10 E. Kopczyński

the stereographic model. The pass of time is now represented using isometry
Mα = Lα

d+1,d+2 (we use the same isometry for the pass of time for s and the
other objects). If the player accelerates, we multiply Ts,t2 by Lα

i,d+2.
The equivalence of S to Sd might suggest Asteroids-like design again: rocks

flying around the sphere. However, the spacetime dSd works very differently:
the space appears to be expanding as time passes, and objects which fly too far
away from s are impossible to reach anymore. In particular, the other side of the
sphere is unreachable. If the game started with a number of randomly pre-placed
objects at time 0, after some time all of them would depressingly fly away from
each other, with at most one of them remaining in the part of universe reachable
to the player. So the world of our de Sitter game is constructed differently. There
is a main star (black-and-yellow in Figure 2), and the goal is to remain close to
the main star as long as possible. Other objects in the universe make this task
harder. Every object (bullet) b gets close to the main star at some time tb;
avoiding being hit is the main challenge of the game, thus making the game an
example of a game in the bullet hell genre. As usual in bullet hell games, the
bullets arrive in waves (sharing similar value of tb) arranged in various patterns.

Numerical precision issues caused by the space expanding exponentially also
arise in dSd. This time, the solution we use in our simulation is not generally
applicable, but rather tailored to the design of our game, that is, based on the
assumption that the player will be always forced to remain close to the main
star. We again use the concept of shift matrices: the shift matrix describing an
object b will be of form (T, tb), which is equivalent to matrix M tbT relative to
the main star at time 0, or equivalently, T relative to the main star at time tb.
Objects need not be rendered if their tb is not close enough to the proper time
of the main star currently visible to the player (if we tried to render them, we
would run into precision issues due to the exponential growth of sinh and cosh).

In the anti-de Sitter case we assumed that every point of the object b, x ∈
X(b) ⊆ S, moves geodesically. This does not work in dSd – if every point moved
geodesically, the objects would expand. Instead, we only assume that the center
O of the object moves geodesically. Instead, after computing tOb and xO

b for
the center O (xb = T−1

s,t Tb,0M
tbO ∈ S), for every other point x ∈ X(b) we

find a geodesic γ′
x which is correct at time tb using the formula γ′

x(tb + t) =
Tb,0MtbL

x1
1,4L

x2
2,4 where (x1, x2) are the coordinates of point x, and find x′

b and
t′b such that x′

b = T−1s, tγ′
x(t

′
b). The point is now rendered at x′

b. We compute
x′
b for every vertex of the polygonal model describing the object b, and render b

as a polygon with vertices obtained by mapping x′
b using the chosen projection.

6 Visualizations and Insights

Science-based games should allow the player to not only experience the challenge
provided by the gameplay, but also play with the simulation. One aspect of this
is that the player can change the parameters of the game (amount of resources,
rocks, scale, speed, etc.) to explore more diverse scenarios without being bothered
with the challenge, making the game accessible to players who are not skilled at

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10


Visualizing de Sitter and anti de Sitter spacetime 11

Fig. 3. Anti-de Sitter spacetime: past light cone view (left), present (middle), and
future light cone view (right). Note the stretched missile in the future light cone view.
Taken from a replay; the red circle is the boundary of the light cone relative to a future
position of the ship. Poincaré disk model.

Fig. 4. De Sitter spacetime: present in stereographic projection (left), spacetime view
(center), and H3 view (right). Unfortunately, the spacetime and H3 views are difficult
to capture in a still image (and also in video due to the compression).

the given game genre. Another aspect is that we should keep the history of every
object in the game. Such history keeping is necessary by the basic construction
of a relativistic game – for example, even if the game knows that some object b
disappears at proper time t (for example, a rock is hit by player’s missile), and
the player has seen that, the player might accelerate, causing them to see the
object b still existing, due to how Lorentz transformations work. While it would
be safe to remove b from memory if the life of b ended in the past light cone, for
the discovery purposes it is better to just remember everything. Since the whole
history is kept, the player can replay their game, possibly from other frame of
reference. While viewing such a replay (or possibly even during the actual game),
the player can change aspects of how the in-game universe is visualized, such as:

– In ãdSd, let the time α pass according to Rα
d+1,d+2 or Mα. The first option

is generally more easier to understand (the camera is not rotating), but

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10


12 E. Kopczyński

both views are interesting. In the second view, the world appears to stop
spinning around the player, but the movement starts looking like wrapping
the spacetime, which is interesting but unintuitive.

– The player can choose to use the current S as explained so far, or they can
take S to be the boundary of the past light cone (corresponding to the events
the ship would be actually seeing at that precise moment), or the boundary
of the future light cone (Figure 3).

– Proper time of every object could be displayed, to let the player see whether
the relativistic effects (time dilation) work as they expect.

– There is also an option to view the 2+1-dimensional spacetime using the
perspective projection. In this visualization, it is assumed that light travels
along geodesics of all kinds. We see a circle of radius 1, the interior of that
circle corresponds to time-like geodesics (space-time events the ship could
reach), and the exterior corresponds to events happening elsewhere. The
circle is essentially a hyperbolic plane in the Beltrami-Klein model; chang-
ing the ship’s velocity transforms the interior of the circle according to the
isometries of this hyperbolic plane. See Figure 4 for an example.

– Interestingly, the isometries of dSd are also the isometries of H3. Both of them
live in Eσ for σ = (+3,−), but H3 is the set of points x where gσ(x, x) = −1,
while dS2 is the set of points x where gσ(x, x) = 1. This observation leads to
another visualization: take the isometry describing the ship’s view, and use
the same isometry to view H3 using Klein-Beltrami ball model, or equiva-
lently, perspective. Such a dual view has interesting properties (pass of time
corresponds to moving the dual camera forward; accelerating corresponds to
moving the dual camera sidewise; points of dSd are represented in this per-
spective as points outside of the Klein-Beltrami ball, in particular points of
S being represented as points in infinity; etc.). See Figure 4 for an example.

The following insights into de Sitter and anti-de Sitter spaces are gained.

– The space in the anti-de Sitter game appears to be rotating. This is because
the fixed parts of the map (the walls based on the tessellation) move along
the geodesics M t1v, while the progress of time is modelled by multiplying
the spacetime coordinates T t

3,4. So, if v ∈ S and the player moves by t units,
the obbject is displayed at (taking t = t1) T−t

3,4M
tv = R1,2(t). An object

cannot simply stay in a fixed place v on screen, because that would not be
geodesic movement: the time interval between v ∈ S and T t

3,4v is greater
and greater when we increase the distance from v to O, and thus timelike
geodesics are pulled towards the center. So in general objects appear to be
orbiting around the ship in circular or elliptical orbits.

– In the de Sitter game, if we imagine S as a sphere with the main star at the
north pole N , objects moving along geodesics will get close to N at some
point, then escape towards the equator. Similarly, if we reversed the time,
we discover they started towards the equator too. If we view the spacetime
relative to the main star, the equator is well visible due to all the objects
close to it. Normally we view the spacetime relative to the ship, which is a

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10


Visualizing de Sitter and anti de Sitter spacetime 13

different frame of reference, so the two equators are distinct. Figure 2 shows
one of them, while Figure 4 shows the equator circle made by bullets we have
avoided in the past, the equator circle made by bullets we will have to avoid
in the future, and also a small circle of bullets we are avoiding right at the
moment when the screenshot was taken.

– Another observation is the Lorentz contraction. All objects appear com-
pressed in the direction of the movement. For example, while all the tes-
sellation tiles are of regular heptagonal shape and the Poincaré model is
conformal, but they appear more and more narrow as we move further away
from the center (Figure 2). Due to the relationship between split quaternions
and the underlying hyperbolic plane, the distance between tiles in ãdS2 are
half the distances between the respective tiles in H2; after switching the view
to Beltrami-Klein model, the heptagons look regular again.

– Dilation of time is best observed in the de Sitter game, by comparing the
proper time of the ship with the score, which is the proper time of the
main star we are close to. Generally the score will be smaller, due to the
geodesic movement of the main star, and non-geodesic movement of the
ship. Interestingly, when the player loses the de Sitter game by getting too
far away from the main star, their score no longer increases – the main star
is escaping so fast that its proper time seen by us does not change.

7 Further work

The engine described in this paper can be extended to other games and experi-
ments in ãdS2 and dS2. To conclude the paper, we describe some extensions.

– An active enemy that attempts to predict where the player’s ship is going
to go (for example, assuming that the ship is simply going along a time-
like geodesic), and shoot there. Such enemies are popular in video games.
This concept would be naturally more interesting in a relativistic game,
since such an enemy would have to predict the player’s ship position based
on the past (that is, if the enemy shoots at time t, it only sees what the
player did at some time in the past, due to the limited speed of light).
This is still deterministic. Non-deterministic enemies are of course also a
possibility. However, interestingly, making the game multi-player introduces
an unexpected challenge, at least if we want the proper time of both players
proportional to the real time elapsed. One interesting way to avoid this issue
would be to make the game end in the case when causality is lost, i.e., one
of the players falls inside the past light cone of another player.

– A map editor to let the players construct their own scenarios and puzzles,
for example, to explore the twin paradox (using fuel to conserve oxygen).

– We have chosen the game to have two spatial dimensions. Two-dimensional
games generally showcase the experimental gameplay better (multi-directional
shooters and bullet hell games work better in two dimensions), and also allow
our three-dimensional visualizations of the space-time. However, immersive

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10


14 E. Kopczyński

three-dimensional variants of our games would also be worthwhile. Our im-
plementation of ãdS2 crucially depends on two-dimensionality, in particular,
the trick of using Mα to pass time while keeping all the world stable, due to
all dimensions being rotated, works only if the number of space dimensions
is even. In three dimensions, one of the dimensions would not be rotated,
and thus not stable. A simple way to add another dimension, keeping our
tessellations of H2 and interpretation of Mα, would be to make our universe
still roughly two-dimensional (a bit like real-world galaxies), just adding one
extra dimension of our space that extrudes the tessellation and is not rotated.

Acknowledgments. This work has been supported by the National Science Centre,
Poland, grant UMO-2019/35/B/ST6/04456.

Disclosure of Interests. Authors have no conflict of interest to declare.

References

1. Cannon, J.W., Floyd, W.J., Kenyon, R., Walter, Parry, R.: Hyperbolic geometry.
In: In Flavors of geometry. pp. 59–115. University Press (1997), available online at
http://www.msri.org/communications/books/Book31/files/cannon.pdf

2. Celińska, D., Kopczyński, E.: Programming languages in github: A visualization
in hyperbolic plane. In: Proceedings of the Eleventh International Conference on
Web and Social Media, ICWSM, Montréal, Québec, Canada, May 15-18, 2017. pp.
727–728. The AAAI Press, Palo Alto, California (2017), https://aaai.org/ocs/
index.php/ICWSM/ICWSM17/paper/view/15583

3. Celińska-Kopczyńska, D., Kopczyński, E.: Generating tree structures for hyperbolic
tessellations (2021)

4. CodeParade: Hyperbolica (2022)
5. COXETER, H.S.M.: Non-Euclidean Geometry. Mathematical Association of

America, 1 edn. (1998), http://www.jstor.org/stable/10.4169/j.ctt13x0n7c
6. Epstein, D.B.A., Paterson, M.S., Cannon, J.W., Holt, D.F., Levy, S.V., Thurston,

W.P.: Word Processing in Groups. A. K. Peters, Ltd., USA (1992)
7. Griffiths, J.B., Podolský, J.: Exact Space-Times in Einstein’s General Relativity.

Cambridge Monographs on Mathematical Physics, Cambridge University Press
(2009)

8. Hall, A.: Velocity raptor (2011), https://testtubegames.com/velocityraptor.
html (accessed April 9, 2024)

9. Hamilton, L., Moitra, A.: A no-go theorem for robust acceleration in
the hyperbolic plane. In: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. pp.
3914–3924 (2021), https://proceedings.neurips.cc/paper/2021/hash/
201d546992726352471cfea6b0df0a48-Abstract.html

10. Hart, V., Hawksley, A., Matsumoto, E.A., Segerman, H.: Non-euclidean virtual
reality I: explorations of H3. In: Proceedings of Bridges: Mathematics, Music,
Art, Architecture, Culture. pp. 33–40. Tessellations Publishing, Phoenix, Arizona
(2017)

11. Kopczyński, E., Celińska, D., Čtrnáct, M.: HyperRogue: Playing with hyperbolic
geometry. In: Proceedings of Bridges : Mathematics, Art, Music, Architecture, Ed-
ucation, Culture. pp. 9–16. Tessellations Publishing, Phoenix, Arizona (2017)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

http://www.msri.org/communications/books/Book31/files/cannon.pdf
https://aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/view/15583
https://aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/view/15583
http://www.jstor.org/stable/10.4169/j.ctt13x0n7c
https://testtubegames.com/velocityraptor.html
https://testtubegames.com/velocityraptor.html
https://proceedings.neurips.cc/paper/2021/hash/201d546992726352471cfea6b0df0a48-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/201d546992726352471cfea6b0df0a48-Abstract.html
https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10


Visualizing de Sitter and anti de Sitter spacetime 15

12. Kopczyński, E., Celińska-Kopczyńska, D.: RogueViz: non-Euclidean geometry en-
gine for visualizations, games, math art, and research (Oct 2023), https://github.
com/zenorogue/hyperrogue/, https://github.com/zenorogue/hyperrogue/

13. Kopczyński, E., Celińska-Kopczyńska, D.: Real-time visualization in
anisotropic geometries. Experimental Mathematics 0(0), 1–20 (2022).
https://doi.org/10.1080/10586458.2022.2050324, https://doi.org/10.
1080/10586458.2022.2050324

14. Kortemeyer, G., Tan, P., Schirra, S.: A slower speed of light: Developing intuition
about special relativity with games. In: International Conference on Foundations
of Digital Games (2013)

15. Maldacena, J.: The large-n limit of superconformal field theories and super-
gravity. International Journal of Theoretical Physics 38(4), 1113–1133 (Apr
1999). https://doi.org/10.1023/A:1026654312961, https://doi.org/10.1023/
A:1026654312961

16. Medved, A.J.M.: How not to construct an asymptotically de sitter universe. Clas-
sical and Quantum Gravity 19(17), 4511 (aug 2002). https://doi.org/10.1088/
0264-9381/19/17/303, https://dx.doi.org/10.1088/0264-9381/19/17/303

17. Osudin, D., Child, C., He, Y.H.: Rendering non-euclidean space in real-time us-
ing spherical and hyperbolic trigonometry. In: Rodrigues, J.M.F., Cardoso, P.J.S.,
Monteiro, J., Lam, R., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J.J., Sloot,
P.M. (eds.) Computational Science – ICCS 2019. pp. 543–550. Springer Interna-
tional Publishing, Cham (2019)

18. Phillips, M., Gunn, C.: Visualizing hyperbolic space: Unusual uses of 4x4 matrices.
In: Proc. I3D. pp. 209–214. Association for Computing Machinery, New York,
NY, USA (1992). https://doi.org/10.1145/147156.147206, https://doi.org/
10.1145/147156.147206

19. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In:
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques. p. 25–34. SIGGRAPH ’87, Association for Computing Machinery, New
York, NY, USA (1987). https://doi.org/10.1145/37401.37406, https://doi.
org/10.1145/37401.37406

20. Seskir, Z.C., Migdał, P., Weidner, C., Anupam, A., Case, N., Davis, N., De-
caroli, C., İlke Ercan, Foti, C., Gora, P., Jankiewicz, K., Cour, B.R.L., Malo,
J.Y., Maniscalco, S., Naeemi, A., Nita, L., Parvin, N., Scafirimuto, F., Sherson,
J.F., Surer, E., Wootton, J.R., Yeh, L., Zabello, O., Chiofalo, M.: Quantum games
and interactive tools for quantum technologies outreach and education. Optical
Engineering 61(8), 081809 (2022). https://doi.org/10.1117/1.OE.61.8.081809,
https://doi.org/10.1117/1.OE.61.8.081809

21. Snyder, J.: Flattening the Earth: Two Thousand Years of Map Projections. Univer-
sity of Chicago Press (1997), https://books.google.pl/books?id=0UzjTJ4w9yEC

22. Squad: Kerbal space program – create and manage your own space program (2022),
https://www.kerbalspaceprogram.com/ (accessed April 9, 2024)

23. Weeks, J.: Real-time rendering in curved spaces. IEEE Computer Graphics
and Applications 22(6), 90–99 (Nov 2002). https://doi.org/10.1109/MCG.2002.
1046633, https://doi.org/10.1109/MCG.2002.1046633

24. Weeks, J.: Geometry games (2009-2021), https://www.geometrygames.org/
HyperbolicGames/ (accessed April 9, 2024)

25. Weeks, J.: Non-euclidean billiards in vr. In: Yackel, C., Bosch, R., Torrence, E.,
Fenyvesi, K. (eds.) Proceedings of Bridges 2020: Mathematics, Art, Music, Archi-
tecture, Education, Culture. pp. 1–8. Tessellations Publishing, Phoenix, Arizona
(2020)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_10

https://github.com/zenorogue/hyperrogue/
https://github.com/zenorogue/hyperrogue/
https://github.com/zenorogue/hyperrogue/
https://doi.org/10.1080/10586458.2022.2050324
https://doi.org/10.1080/10586458.2022.2050324
https://doi.org/10.1080/10586458.2022.2050324
https://doi.org/10.1080/10586458.2022.2050324
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1088/0264-9381/19/17/303
https://doi.org/10.1088/0264-9381/19/17/303
https://doi.org/10.1088/0264-9381/19/17/303
https://doi.org/10.1088/0264-9381/19/17/303
https://dx.doi.org/10.1088/0264-9381/19/17/303
https://doi.org/10.1145/147156.147206
https://doi.org/10.1145/147156.147206
https://doi.org/10.1145/147156.147206
https://doi.org/10.1145/147156.147206
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1117/1.OE.61.8.081809
https://doi.org/10.1117/1.OE.61.8.081809
https://doi.org/10.1117/1.OE.61.8.081809
https://books.google.pl/books?id=0UzjTJ4w9yEC
https://www.kerbalspaceprogram.com/
https://doi.org/10.1109/MCG.2002.1046633
https://doi.org/10.1109/MCG.2002.1046633
https://doi.org/10.1109/MCG.2002.1046633
https://doi.org/10.1109/MCG.2002.1046633
https://doi.org/10.1109/MCG.2002.1046633
https://www.geometrygames.org/HyperbolicGames/
https://www.geometrygames.org/HyperbolicGames/
https://dx.doi.org/10.1007/978-3-031-63749-0_10
https://dx.doi.org/10.1007/978-3-031-63749-0_10

