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Abstract. We present a new approach for real-time retrieval and clas-
sification of solar images using a proposed sector-based image hashing
technique. To this end, we generate intermediate hand-crafted features
from automatically detected active regions in the form of layer-sector-
based descriptors. Additionally, we employ a small fully-connected au-
toencoder to encode and finally obtain the concise Layer-Sector Solar
Hash. By reducing the amount of data required to describe the Sun im-
ages, we achieve almost real-time retrieval speed of similar images to the
query image. Since solar AIA images are not labeled, for the purposes
of the presented test experiments, we consider images produced within
a short time frame (typically up to several hours) to be similar. This
approach has several potential applications, including searching, classi-
fying, and retrieving solar flares, which are of critical importance for
many aspects of life on Earth.

1 Introduction

The Solar Dynamics Observatory (SDO) was launched by NASA in 2010 as a
part of the Living with a Star program with the aim of providing data to study
the interconnected Sun-Earth system and how the Sun impacts life on Earth.
The Sun’s activity, such as massive electromagnetic storms, can negatively affect
various technologies including electronics, navigation systems, and electric power
grids. Solar activity, which is influenced by the sunspot cycle and other transient
aperiodic processes, plays a significant role in creating space weather that affects
both space- and ground-based technologies, as well as the Earth’s atmosphere.
Furthermore, the Sun’s behavior is partially responsible for climate fluctuations
on a scale of centuries and longer. Comprehending and forecasting the sunspot
cycle continues to be a significant scientific challenge, with far-reaching con-
sequences for space science and our understanding of magnetohydrodynamic
phenomena in the Solar System and on Earth.
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The SDO is a 3-axis stabilized spacecraft equipped with three main sen-
soric instruments, one of which is the Atmospheric Imaging Assembly (AIA).
AIA continuously captures full-disk observations of the solar chromosphere and
corona in seven extreme ultraviolet (EUV) channels, producing high-resolution
images with a 12-second cadence at 4096 × 4096 pixels. The commencement of
the SDO program enabled the analysis of solar activity, despite the challenge
of dealing with big data. SDO generates around 70 thousand images every day,
which makes it impossible to manually search and annotate this vast collection
of images. Additionally, the repetitiveness and monotony of these images make
the annotation process even more difficult for humans. The images captured
by the SDO are quite similar to one another, making it challenging to describe
them using general-purpose visual features. Additionally, the images are only
labeled by their timestamp, which further adds to the difficulty in analyzing and
categorizing them.

For our research, we utilize a 4K resolution dataset that has been prepared by
Kucuk et al. [19] specifically for image retrieval purposes. This dataset comprises
hundreds of thousands of full-disk images of the Sun, with temporal and spatial
event features included in the records. Such large datasets are difficult to search
and detect changes anomalies [9, 17].

Traditionally, hand-crafted features have been used to classify or predict the
state of the Sun from its images. For instance, Banda et al. [2] identified ten
distinct image parameters that are the best representation of the Solar state
when extracted from Solar full-disk images. These parameters are also present
in the dataset we use. In [4], the Lucene retrieval engine was modified to retrieve
solar images based on descriptive solar features developed in [3]. These features
have also been utilized by Boubrahimi et al. in [6] and Ma et al. in [20] to forecast
solar event trajectories.

Our paper introduces a solar hash designed to locate similar solar images
from a vast collection of solar images. We employ a fully-connected autoencoder
that operates on preprocessed solar full-disk projections. Our emphasis is on
optimizing the retrieval process, and our proposed method outperforms existing
methods in terms of speed and accuracy. The proposed solar hashes are key
to achieving faster retrieval times. It is worth noting that direct full-disk solar
image hashing is computationally demanding (for one year period approx 10
days), which was the primary motivation for our work.

The rest of the paper is organized as follows. In Section 2 we describe shortly
other content-based image retrieval methods. The proposed method is described
in Section 3. The experiments are described in Section 4. Section 5 concludes
the paper.

2 Related Works

The article [1] details a system for content-based image retrieval that covers the
entire disk. The authors experimented with eighteen image similarity measures
and a range of image features, resulting in one hundred and eighty unique com-
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binations. Through these experiments, the authors identified suitable metrics
for comparing solar images, which can aid in the retrieval and classification of
various phenomena. The article referenced as [3] outlines a segmentation method
for full-disk SDO images, where sub-images are created based on a 64× 64 grid.
Ten parameters are then calculated for each sub-image, including entropy, frac-
tal dimension, mean intensity, third and fourth moments, relative smoothness,
standard deviation of intensity, Tamura contrast, Tamura directionality, and
uniformity.

In [4], the retrieval of solar images is performed using Lucene, a versatile
retrieval engine. Each image is considered a distinct document, comprising 64
elements (rows of each image). To locate similar solar events, wild-card charac-
ters are used in the query strings. In [5], the effectiveness of the Lucene engine
is compared to distance-based image retrieval approaches, but no clear winner is
identified. The tested methods each exhibit advantages and drawbacks in terms
of accuracy, speed, and suitability. The balance between accuracy and speed is
considerable, with retrieval times of several minutes being necessary for precise
outcomes. In [14], a sparse model representation was introduced for solar images,
utilizing the approach from [21]. The proposed method surpassed previous solar
image retrieval techniques in both accuracy and speed.

In [16], certain solar image parameters are selected to monitor various solar
events across images with a 6-minute interval. In [15], sparse codes for AIA im-
ages are also utilized, with ten texture-based image parameters being employed
to generate the code. The parameters are determined for regions identified by
a 64 × 64 grid for nine wavelengths. A dictionary of k elements is learned for
each wavelength, and a sparse representation is subsequently calculated. In order
to address the issue of dimensionality that impacts solar data, the researchers
employed the Minkowski norm and carefully selected an appropriate value for
the parameter p. As a result of their efforts, they were able to utilize a 256-
dimensional descriptor that demonstrated both efficiency and accuracy, surpass-
ing previous methodologies. In recent years, significant progress has been made
in image retrieval using learned semantic hashes [18]. The objective of semantic
hashing [23] is to generate concise vectors that capture the semantic information
of objects. By searching for similar hashes, we can quickly retrieve similar ob-
jects, a process that is considerably faster and requires less memory than direct
manipulation of the objects themselves. Generating hashes from high-resolution
full-disk solar images would not be feasible due to the sheer size of the image
collections. As a result, we have devised a new rapid binary hash based on the
engineered features we refer to as intermediate descriptors throughout this pa-
per.

3 Proposed Method for Solar Image Hashing

In this section, we introduce an innovative approach to create a hash for solar
images. This hash can be used later on to retrieve solar images from vast col-
lections of solar image datasets. We obtained the solar images from the Solar
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Dynamics Observatory (SDO), which were refined and released through a Web
API by [19]. Although the API provides several resolutions, we opted for a res-
olution of 2048 × 2048. We performed evaluation study in order to determine
the best resolution. The results, determine 2048 × 2048 as the best one. The
algorithm we present comprises three primary stages: computing the descriptor
of the solar image, hashing the descriptor, and retrieving the solar image.

3.1 Calculating Solar Image Descriptor

At this stage, we input a solar image and generate a corresponding solar im-
age descriptor as output. After extensive research, we concluded that the most
suitable image resolution to use is 2048 × 2048. Hence, we obtain a solar im-
age descriptor as output by providing a solar image as input at a resolution of
2048 × 2048. The input image is obtained from the SDO’s AIA (Atmospheric
Imaging Assembly) instrument. The brighter areas visible in the input image
correspond to Active Regions (ARs), which are of great significance in study-
ing solar flares. These flares pose a significant risk to the safety of power grids,
satellites, and other electronic devices situated in Earth’s orbit or on its surface,
making the study of ARs particularly important.

Active Regions (ARs) can exhibit a wide range of shapes and positions rel-
ative to the SDO telescope that can change as a result of the Sun’s rotational
movement. The first stage of the proposed method involves detecting and describ-
ing the shapes and positions of ARs. This stage comprises a sequence of steps,
starting with the conversion of the image from RGB to grayscale to reduce the
number of color channels from three to one. Subsequently, the pixel intensity
values are in the range of [0 : 255]. A Gaussian blur filter, a widely used image
filter, is then applied to remove insignificant and small regions. Next, we filter
the pixel intensities using the threshold parameter th. After these preliminary
steps, the resulting image undergoes thresholding. In this step, we compare the
intensity of each pixel with the provided threshold value, th. If the intensity is
greater than or equal to th, we classify the pixel as a part of the active region.
The value of the th parameter was determined empirically based on experimen-
tal observations. For the given solar image dataset, we adjusted this parameter
value to 180. After thresholding, the resulting image is subjected to common
morphological operations, such as erosion and dilation.

The erosion operation eliminates small, isolated objects, also known as “is-
lands”, leaving only significant objects in the image. On the other hand, the
dilation operation enhances the visibility of objects and fills small holes within
them. By applying these two types of morphological operations, we are able
to enhance the important features of active regions. Further information about
morphological operations can be found in [10] or [24].

Figure 1 illustrates the results of the active region detection process. The
applied operations successfully identify the active regions in the solar image.
The precise detection of these regions, including their location and shape, is
crucial for predicting Coronal Mass Ejections (CME) and solar flares.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_8

https://dx.doi.org/10.1007/978-3-031-63749-0_8
https://dx.doi.org/10.1007/978-3-031-63749-0_8


Toward Real-time Solar Content-based Image Retrieval 5

Fig. 1. Active region detection process. The top image (A) is the input image obtained
from SDO Web API. The bottom image (B) is the output image obtained based on
active region detection process.
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After obtaining the active regions through the previous steps, the next step
involves representing them mathematically in the form of a descriptor. Since the
dataset used in this study provides images with a 6-minute window cadence, it is
assumed that the active regions change slightly between consecutive images due
to the Sun’s rotation movement. Therefore, a fast image hash is proposed that is
resistant to small changes in perspective. To efficiently represent the shape and
position of Active Regions on the Active Region Image (ARI), we propose a novel
approach. We divide ARI into sectors (similarly to pizza slices) and calculate the
sum of pixels for each sector. This method is efficient and allows for a compact
representation of the shape and position of Active Regions, avoiding the need to
compare high-resolution images. In order to describe the method in more detail,
we begin by setting the coordinates of the image center, which we denote as cc.
The radius r is fixed since the Sun’s position on the image remains constant.
Empirical experiments have led us to determine that the angle of θ = 30° yields
optimal results. Then we need to divide the radius r to a number of layers of our
descriptor. We used radius segment parameter rs for this purpose. The value
of the rs can vary which has the significant impact on the descriptor. In Fig.
2 we divided the radius r only for four layers, in order to present the process
transparently. After the extensive research we determined that the most optimal
is to divide the radius on 10 segments. Then, we apply a cropping operation on
the obtained sectors using the algorithm provided in Alg. 1. To calculate the arc
points of the slice (sector) aps and ape, we use the following formulas:

apex = ccx − 1.5 ∗ rs ∗ sin θ, (1)

apey = ccy − 1.5 ∗ rs ∗ cos θ, (2)

The arc points of the sector are calculated using the formulas that involve the
trigonometric functions sin and cos. These formulas calculate the row and column
coordinates of two points on the arc. To extend the arc slightly beyond the circle’s
radius, a factor of 1.5 is applied. The obtained arc points are then used to crop
the slice from ARI. The cc is circle center position thus ccx and ccy are center
position coordinates. The procedure for slicing the ARI is repeated for each
layer circle sector, resulting in a list of ARI layer sectors (CARI) which contains
a list of active region pixels for every CARI. In order to obtain the mathematical
description of ARI we build an active region pixels histogram assigned to given
circle sector histogram (LCSH). Next, the obtained histograms are concatenated
into a single vector (DV). The entire process is illustrated in Figure 2.

The initial step involves applying morphological operations of erosion and
dilation, followed by thresholding of the input image, resulting in an image of
detected active regions, as defined by Equation 3. Subsequently, the image is
sliced into layer circle sectors which allows us to obtain the CARI slices, using
Equation 4. In the next step the LCSH histograms are calculated, based on
previously obtained CARI slices. Afterwards, we concatenate the histograms
into the vector DV. This vector is later referred as LSBD – Layer-sector-based
Descriptor.
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INPUT: ARI - active region image
rs - radius segment
cc - center coordinates of ARI
θ - angle of the slice
Local Variables:
MC - mask circle matrix
MARI - mask ARI matrix
ape - coordinates of starting point on the arc
OUTPUT: CARI - cropped slice of ARI
MC := CreateBooleanCircleMatrix(cc, rs)
MARI := CreatePolygonMatrix([ccx, apsx, apex, ccx],
[ccy, apsy, apey, ccy])
CARI := CombineMasks(MC,MARI)

Algorithm 1: Algorithm for cropping the ARI slice.

Fig. 2. Steps for calculating the layer circle sector vector (DV).

t(ARI, i, j, th) =

{
1, ARIi,j ≥ th

0, otherwise
, (3)

where th is the threshold value and ARI is the active region image.

CI(CARI, th)k,l =

=
∑(k+1)∗ssx−1

i=k∗ssx
∑(l+1)∗ssy−1

j=l∗ssy t(CARI, i, j, th)
, (4)

where ssx is the sector size in x-axis and ssy is the sector size in y-axis. The
Layer-sector-based Descriptor (LSBD) calculation process serves to significantly
reduce the data volume during the encoding stage. The primary objective of this
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Table 1. Tabular representation of the fully-connected autoencoder model.

Layer (type) Output Filters Params
(in, out)

Input(InputLayer) [1, 120] 0
Linear 1(Linear) [1, 60] 120, 60 7,260

ReLU 1 [1, 60] 0
Linear 2(Linear) [1, 60] 60, 30 1,830

ReLU 2 [1, 30] 0
Encoded(latent− space) [1, 30]

Linear 4(Linear) [1, 30] 30, 60 1,860
ReLU 4 [1, 60] 0

Linear 5(Linear) [1, 120] 60, 120 7,320
ReLU 5 [1, 120] 0

Decoded(Tanh) [1, 120]

process is to generate an intermediate, hand-crafted mathematical representa-
tion of AR images that can be utilized in the subsequent step. Thanks to this
process we obtained the LSBD of 120-length (12 sectors and 10 layers), which
is a significant reduction in comparison to the full-disc image. Despite that, we
can reduce it even further, by using the fully-connected autoencoder described
in Sec. 3.2.

3.2 Hash Generation

This section details the process of generating a hash using a Layer-sector-based
Descriptor (LSBD) as input. The objective of this step is to produce a represen-
tative hash that accurately describes the solar image, with a particular focus on
its active regions at a specific timestamp. This step is critical as it enables the
reduction of data during the retrieval stage, as discussed in Section 3.3. To exe-
cute this operation, we employed a fully-connected autoencoder (AE) to encode
the acquired LSBD. Autoencoders are utilized in various machine learning tasks,
including image compression, dimensionality reduction, feature extraction, and
image reconstruction [7, 11, 22]. Autoencoders are ideal for generating semantic
hashes as they utilize unsupervised learning. The architecture of the autoencoder
model is presented in Table 1, and it should be analyzed from top to bottom.
As illustrated, the model is relatively straightforward yet effective in reducing
the hash length without significant information loss regarding magnetic regions
of the magnetogram. It is worth noting that only the encoded portion of the
trained AE’s latent space is used for hash generation, while the decoding por-
tion of the AE is solely utilized for training purposes. After conducting several
experiments, we concluded that 40 epochs are adequate to achieve a satisfactory
level of generalization without experiencing overfitting.

Table 1 demonstrates the utilization of a convolutional autoencoder for gen-
erating hashes, with the top layer serving as input. A one-dimensional autoen-
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coder was utilized due to the fact that magnetic intensity descriptors are one-
dimensional vectors, which helps to minimize computational complexity. By us-
ing this process, we are able to effectively reduce the hash length while retaining
a substantial amount of information about the active regions of the solar image.
The mean squared error function was employed as the loss function, and we
determined that training the model for 40 epochs was sufficient for achieving
the required level of generalization and avoiding network over-fitting. After the
training process, each image descriptor was passed through the encoding layers
of the autoencoder, resulting in a 30-element hash called the Layer-Sector Solar
Hash (LSSH). This hash can be utilized in content-based retrieval applications
that involve solar images. Furthermore, the selected autoencoder architecture
was deliberately chosen to ensure optimal generalization.

3.3 Retrieval

In the final phase of the proposed method, we use the previously generated
hashes for solar image retrieval. After completing the previous steps, we assume
that each solar image in our database has been assigned a hash. The retrieval
process involves executing an image query by comparing the distances between
the hash of the query image and the hashes created for all images stored in the
dataset. To perform this retrieval, we need to have a database of solar images
that have undergone hash generation. In the subsequent step, we compute the
distance (d) between the hash of the query image and every hash in the database.
For this purpose, the cosine distance measure is employed. (see [13] for additional
information).

cos(QHj , IHj) =

n∑
j=0

(QHj • IHj)

∥QHj∥ ∥IHj∥
, (5)

where • is a dot product, QHj is the query image hash, and IHj a consecutive
image hash. After computing the cosine distance, the images in the database are
sorted in ascending order based on their distance from the query hash. In the final
step of the proposed method, the n images closest to the query are retrieved and
returned to the user. The value of the parameter n needs to be provided by the
user to execute the query. Alg. 4 illustrates the complete process as pseudo-code.
An alternative method for image retrieval involves setting a threshold for the
cosine distance. In this approach, the user provides a threshold parameter instead
of n, and images are retrieved if their cosine distance to the query is below the
threshold. The presented technique can also support the threshold-based image
retrieval method, where images are retrieved if their cosine distance to the query
is below the threshold value. However, the first method, which retrieves the top
n images closest to the query, is more user-friendly and recommended. The
retrieval process is presented in Alg. 2.
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INPUT: ImageHashes, QueryImage, n
OUTPUT: RetrievedImages
foreach ImageHash ∈ ImageHashes do

QueryImageHash = CalculateHash(QueryImage)
D[i] = Cos(QueryImageHash, ImageHash)

end
SortedDistances = SortAscending(D)
RetrievedImages = TakeF irst(n)

Algorithm 2: Image retrieval steps.

4 Experimental Results

In this section, we present the simulation results and a solution for evaluating un-
labeled images using unsupervised learning for encoding descriptors. The lack of
labeled data necessitated the use of this approach. As there was a lack of labeled
data, evaluating the proposed method against state-of-the-art approaches was
difficult. To overcome this issue, we utilized the rotation movement of the Sun
to identify a set of similar images (SI). We speculated that consecutive images
taken within a small-time window would display similar active regions, albeit
with minor displacements. The solar images provided were captured at 6-minute
intervals, which implied that they were similar due to the Sun’s movement. The
only necessary adjustment was to vary the time window. After experimentation,
we found that images captured within a 48-hour time window could be considered
similar. Let us analyze the following case. Suppose we have an image captured
at 2011-02-15, 00:00:00. According to the assumptions mentioned earlier, we can
consider every image captured 24 hours before and after as similar. To identify
images, we use their timestamps solely for evaluation purposes. Table 2 presents
the process of determining similar images. A set of experiments was conducted to
assess image similarity using the proposed method. Each experiment comprised
the following steps:

1. Execute an image query to retrieve images.
2. Comparing the retrieved images’ timestamps with the query image times-

tamp.
3. Identifying images with timestamps that fell within a 48-hour window as

similar to the query.

After defining the set of similar images (SI), we can define the performance
measures of precision and recall [8, 25] based on the following sets:

– SI - set of similar images,
– RI - set of retrieved images for query,
– PRI(TP ) - set of positive retrieved images (true positive),
– FPRI(FP ) - false positive retrieved images (false positive),
– PNRI(FN) - positive, not retrieved images,
– FNRI(TN) - false, not retrieved images (TN).
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Table 2. Defining image similarity. Based on experiments, we determined that images
within a 48-hour window can be treated as similar. This allows to evaluate the method.

Timestamp SI (similar image)/ NSI (not similar image)

2011-02-13, 23:54:00 NSI
2011-02-14, 00:00:00 SI
2011-02-14, 00:06:00 SI
2011-02-14, 00:12:00 SI
2011-02-14, 00:18:00 SI
2011-02-14, 00:24:00 SI
2011-02-14, 00:30:00 SI

........ SI
2011-02-15, 00:00:00 QI (query image)

........ SI
2011-02-15, 23:24:00 SI
2011-02-15, 23:30:00 SI
2011-02-15, 23:36:00 SI
2011-02-15, 23:42:00 SI
2011-02-15, 23:48:00 SI
2011-02-15, 23:54:00 SI
2011-02-16, 00:00:00 NSI

We can then define the measures of precision, recall and F1 for CBIR systems.

precision =
|PRI|

|PRI + FPRI|
, (6)

recall =
|PRI|

|PRI + PNRI|
. (7)

F1 = 2
precision · recall
precision + recall

. (8)

The experimental results presented in Tab. 3 are promising, as demonstrated
by the average value of F1 and the high precision values. Our method demon-
strated superior performance compared to previous works, with an average pre-
cision of 0.92186. In comparison, Banda et al. achieved a precision of 0.848, and
Angryk et al. achieved a precision of 0.850 [3, 5]. Moreover, our method also
outperformed the results obtained in the study by Grycuk et al. [12]. Most of
the solar images that had a small distance from the query image were retrieved
successfully. However, for solar images with larger distances, they were classified
as positive but not retrieved images (PNRI). Nevertheless, this value was con-
siderably reduced compared to previous studies. The high values of PNRI can
be attributed to the Sun’s rotation movement, which may cause active regions
to shift or disappear, even within the 48-hour time window.
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Table 3. Experiment results for the proposed algorithm. Due to lack of space, we
present only a part of all queries.

Timestamp RI SI PRI(TP) FPRI(FP) PNRI(FN) Prec. Recall F1

2011-01-01 00:00:00 199 241 187 12 54 0.94 0.78 0.85

2011-01-04 16:06:00 403 481 384 19 97 0.95 0.80 0.87

2011-01-06 19:12:00 412 481 366 46 115 0.89 0.76 0.82

...

2011-01-15 18:18:00 386 481 361 25 120 0.94 0.75 0.83

2011-01-18 02:24:00 430 481 389 41 92 0.90 0.81 0.85

2011-01-20 12:24:00 404 481 379 25 102 0.94 0.79 0.86

...

2011-02-03 07:36:00 404 481 373 31 108 0.92 0.78 0.84

2011-02-05 19:42:00 419 481 368 51 113 0.88 0.77 0.82

2011-02-13 17:48:00 420 481 387 33 94 0.92 0.80 0.86

Avg. 0.922 0.788 0.849

5 Conclusions

We presented a new approach for very fast retrieving and classifying solar images
using sector-based image hashing. Our initial attempt was to generate hashes
directly from full-disc images, but we encountered computational complexity
issues due to too large input data for the autoencoder. Consequently, we opted to
create intermediate hand-crafted features to address this challenge. We utilized
morphological operations to preprocess input images and detect active regions.
Next, we compute the layer-sector-based descriptors. Once this step is completed,
we employ a fully-connected autoencoder to encode the descriptors, resulting in
the concise Layer-Sector Solar Hash. By undergoing a second encoding process,
we are able to greatly reduce the length of the descriptors. Our experiments
have shown a reduction of over four times compared to the layer-sector-based
descriptor obtained in the initial stage. This reduction in hash length is crucial
for improving the speed of calculating the distances between hashes, which in
turn determines the similarity of solar images. Since solar AIA (Atmospheric
Imaging Assembly) images are not labeled, we consider images produced within
a short time frame of each other (typically up to several hours) to be similar. In
reality, even at different times, the Sun’s configuration may be similar. Hence,
our precision and recall measures, which depend solely on the image content, are
likely to have even higher values in practical use. The approach we have presented
has several potential applications, including searching, classifying, and retrieving
solar flares, which are of critical importance for many aspects of life on Earth.
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