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Abstract. Interior point methods are widely used for different types
of mathematical optimization problems. Many implementations of inte-
rior point methods in use today rely on direct linear solvers to solve
systems of equations in each iteration. The need to solve ever larger
optimization problems more efficiently and the rise of hardware acceler-
ators for general purpose computing has led to a large interest in using
iterative linear solvers instead, with the major issue being inevitable ill-
conditioning of the linear systems arising as the optimization progresses.
We investigate the use of Krylov solvers for interior point methods in
solving optimization problems from radiation therapy and support vec-
tor machines. We implement a prototype interior point method using
a so called doubly augmented formulation of the Karush-Kuhn-Tucker
linear system of equations, originally proposed by Forsgren and Gill, and
evaluate its performance on real optimization problems from radiation
therapy and support vector machines. Crucially, our implementation uses
a preconditioned conjugate gradient method with Jacobi preconditioning
internally. Our measurements of the conditioning of the linear systems
indicate that the Jacobi preconditioner improves the conditioning of the
systems to a degree that they can be solved iteratively, but there is room
for further improvement in that regard. Furthermore, profiling of our pro-
totype code shows that it is suitable for GPU acceleration, which may
further improve its performance in practice. Overall, our results indicate
that our method can find solutions of acceptable accuracy in reasonable
time, even with a simple Jacobi preconditioner.

Keywords: Interior point method · Krylov solver · Radiation therapy ·
Support Vector Machines

1 Introduction

Mathematical optimization is used in many areas of science and industry, with
applications in fields like precision medicine, operations research and many oth-
ers. In this paper, we focus on the solution of quadratic programs (QP), which
are optimization problems with a quadratic objective function and linear con-
straints, using an interior point method (IPM). These arise in many applications
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naturally, for instance in training support vector machine classifiers, but can also
be used as part of a sequential quadratic programming solver [3] to solve more
general nonlinear optimization problems.

Computationally, IPMs for optimization rely on Newton’s method to find
search directions. This involves the solution of a large, often sparse and struc-
tured linear system of equations, which we will refer to henceforth as the Karush-
Kuhn-Tucker (KKT) system, at each iteration. Traditionally, this system is often
solved using direct linear solvers, such as LDLT -factorization for indefinite ma-
trices or Cholesky factorization for positive definite methods, but a topic of
interest for much research in the field is the use of iterative linear solvers [23] in-
stead. Indeed, the move to iterative linear algebra for interior point methods has
been identified by some authors as a key step in enabling interior point methods
to handle very large optimization problems [15].

Another advantage of iterative algorithms for solving linear systems is their
suitability for modern computing hardware, such as GPUs. With their rising
dominance in High-Performance Computing (HPC), extracting the maximum
performance from modern computing hardware all but requires the use of some
type of accelerator. Direct linear solvers can suffer performance wise on these
types of hardware for a variety of reasons, e.g., unstructured memory accesses,
which has been seen in previous studies [25] in the context of interior point meth-
ods. The major challenge of using iterative solvers lies in a structured form of
ill-conditioning that inevitably exists in the linear systems, which can be severely
detrimental to the convergence of the linear solver. Still, given potential perfor-
mance gains from the use of significantly more powerful computing resources,
we believe the trade-off between numerical stability and parallel performance is
worthy of further investigation.

One type of problems we consider arise from treatment planning for radiation
therapy, which loosely speaking is the process of optimizing treatment plans
(treatment machine parameters) for each individual patient case to deliver as
accurate a dose as possible to the tumor volume. This inverse problem is often
solved by formulating it as a constrained optimization problem, for which finding
a solution can be both computationally expensive and present an important
bottleneck in the clinical workflow. Computational speed and efficiency is thus of
crucial importance, and in the ideal case the optimization would be performed in
real time, with the patient present at the clinic. To demonstrate the applicability
of our proposed method to other problems as well, we also consider problems
from the training of support vector machine classifiers [19], an important method
from classical machine learning. All in all, we are interested in studying and
evaluating the potential of using IPMs with iterative linear solvers as an avenue
to enable us to utilize accelerators and powerful computing resources for solving
these problems more efficiently.

In this paper, we propose a complete IPM solver prototype based on the
work by Forsgren and Gill in [11], where a special formulation of the KKT
systems from interior point methods is considered, which guarantees that the
KKT system is positive-definite throughout the optimization for convex prob-
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lems. Our contribution a complete IPM solver prototype using the doubly aug-
mented formulation and iterative linear solvers, which is capable of solving real
world optimization problems. We demonstrate its effectiveness for the solution
of quadratic optimization problems arising from real world applications in both
radiation therapy treatment planning as well as support vector machines.

2 Background

2.1 Interior Point Methods

We are concerned with the solution of convex, continuous quadratic programs
using interior point methods. The following section introduces the relevant as-
pects for our proposed method. Readers interested in a more thorough overview
of interior point methods for optimization are referred to e.g. [26,13]. In general,
we will be dealing with a problem on the form:

min.
1

2
xTHx+ pTx

s.t. l ≤ Ax ≤ u

Cx = b

(1)

where H is the (positive definite) Hessian of the objective function, p ∈ Rn are
the linear coefficients of the objective, A,C are the Jacobians of the (linear)
inequality- and equality constraints, respectively. In general, we allow compo-
nents of the constraints to be unbounded, but we do not account for this ex-
plicitly to simplify the exposition. Inequality constraints are often treated by
the introduction of auxiliary slack variables. We convert the problem to having
only lower bounds, introduce slack variables sl, su (for lower and upper bounds
respectively), use a log-barrier term for the inequality constraints and finally, we
use a penalty barrier method [10,13] to handle equality constraints, giving:

min.
1

2
xTHx+ pTx−

− µ
∑

log((sl)i)− µ
∑

log((su)i)+

+
1

2µ
||Cx− b||2

s.t. Ax− sl − l = 0

−Ax− su + u = 0

(2)

Here µ is the so called barrier parameter. Intuitively, the barrier terms diverge
towards +∞ as the boundary of the feasible set is approached, thus encouraging
feasibility throughout the iterations. As is common in primal-dual interior point
methods, we work with the perturbed optimality conditions. These state that
an optimal solution to the equality constrained subproblem in (2) satisfies the

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_5

https://dx.doi.org/10.1007/978-3-031-63749-0_5
https://dx.doi.org/10.1007/978-3-031-63749-0_5
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following:
rH := Hx+ p−ATλl +ATλu − CTλe = 0

rAl
:= Ax− sl − l = 0

rAu
:= −Ax+ su + u = 0

re := Cx− b+ µλe = 0

rc1 := (λl)i(sl)i − µ = 0, i = 1, ...,ml

rc2 := (λl)i(su)i − µ = 0, i = 1, ...,ml.

(3)

These conditions are very similar to the first order Karush-Kuhn-Tucker con-
ditions for optimality [20, Ch. 12.3], except that the final two conditions are
perturbed by µ, and the inclusion of the penalty barrier method for equality
constraints. Primal-dual interior point methods generally seek points satisfying
the perturbed optimality conditions above using, e.g., Newton’s method, while
successively decreasing the barrier parameter µ → 0. As µ approaches 0, we
expect our solution to approach a point satisfying the KKT conditions for opti-
mality.

2.2 Optimization Problems in Radiation Therapy and SVMs

The first type of problem we consider are from radiation therapy, and are all
exported from the treatment planning system RayStation, developed by the
Stockholm-based company RaySearch Laboratories. The problems all arise from
treatment planning for radiation therapy, where an optimization problem is
solved to determine a treatment plan for each individual patient. A view of
treatment planning from an optimization perspective can be found in e.g. [8,9].

The optimization problems from RayStation are QP-subproblems in a Se-
quential Quadratic Programming solver used for nonlinear optimization, and
have the form:

min.
1

2
pT∇xxL(x, λ)p+ (∇f)T (x)p

s.t. ∇g(x)T p+ g(x) ≥ 0.
(4)

Here, L(x, λ) = f(x) − g(x)λT is the Lagrangian, and λ are the Lagrange mul-
tipliers. In practice, the Hessian of the Lagrangian ∇xxL(x, λ) can be expensive
to form, and it is common to use a quasi-Newton type approximation of the Hes-
sian instead. The SQP solver uses Broyden-Fletcher-Goldfarb-Shanno (BFGS)
updates [4] to estimate the Hessian of the non-linear problem, which means that
the Hessian for each of our QP-subproblems can be written on matrix form as:

H = H0 + UWUT , (5)

where H0 is the initial approximation to the Hessian, the dense n× k matrix U
consists of the update vectors on the columns, and W is a diagonal matrix with
the scalar update weights on the diagonal. With a suitable line-search method,
the updates to the Hessian can be ensured to preserve positive definiteness, thus
making the QP-subproblem we need to solve at each SQP iteration convex.
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The second type of problem we consider are QP dual problems from support
vector machine training for classification. These problems are of the form:

min.
1

2
αTHα− αT e

s.t. αT y = 0

0 ≤ α ≤ c,

(6)

where the HessianH is of the formH = yyTQ, and the entries ofQ areK(xi, xj),
for some ”kernel” K used to map the data into a (more) separable space. For
our experiments, we use a radial basis function kernel

K(xi, xj) = exp(−||xi − xj ||2/2σ).

3 Prototype Interior Point Method

We now describe the key components of our prototype interior point method
implementation used in this paper.

3.1 KKT System Formulation

Many optimization problems from real applications include bounds on the (pri-
mal) variables themselves. Such bounds can be included by the introduction of
appropriate rows in the A matrix. For an efficient formulation, we will consider
the bounds on variables separately from general linear constraints. Separating
the handling of the variable bounds (i.e. lower and upper bounds on the val-
ues of the variables x) and then using Newton’s method to solve the perturbed
optimality conditions (3) gives a linear system of the form:

H −AT AT −I I CT

C M
A −I
−A −I
I −I
−I −I

SlA ΛlA

SuA
ΛuA

Slx Λlx

Sux
Λux





∆x
∆λlA

∆λuA

∆λlx

∆λux

∆λe

∆slA
∆suA

∆slx
∆sux


=



−rH
−re
−rlA
−ruA

−rlx
−rux

−rc1
−rc2
−rc3
−rc4


, (7)

where λe, λlA , λuA
, λlx , λux are the Lagrange multipliers for the equality con-

straints, lower and upper bounds on the (general) linear constraints, and lower
and upper bounds for the variable bounds respectively. The slack variables s are
subscripted in the same way. The residuals on the RHS are similar to the ones
shown in (3). Λ, S,M denote diagonal matrices with the corresponding Lagrange
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multipliers, slack variables or barrier parameter µ on the diagonal respectively,
and e is an appropriately sized column-vector with a value of 1 in all coefficients.

The above system can be reduced in size by block-row elimination. Multiply-
ing the sixth and seventh block row by Λ−1

lA
and the fifth block row by Λ−1

uA
and

adding them to the second and third rows, followed by multiplying the sixth and
seventh block rows by S−1

lx
and −S−1

ux
respectively and adding to the top row,

as well as multiplying the fourth and fifth block rows by S−1
lx

Λlx and −S−1
ux

Λux

and adding to the top row. The final reduced linear system of equations (with
the same row operations on the RHS) can be written as:(

Q −BT

B D

)(
∆x
∆λA

)
=

(
r1
r2

)
, (8)

where:

Q = H + S−1
lx

Λlx + S−1
ux

Λux
, B =

 C
A
−A

 , D =

M
Λ−1
lA

SlA

Λ−1
uA

SuA

 .

∆λA =

 ∆λe

∆λlA

∆λuA

 , r1 = −rH − S−1
lx

rc3 + S−1
ux

rc4 − S−1
lx

Λlxrlx + S−1
ux

Λux
rux

r2 =

 −re
−rAl

− Λ−1
lA

rc1
−rAu

− Λ−1
uA

rc2


At this point the purpose of handling the variable bounds separately becomes
clear, since they now only contribute a diagonal term S−1

lx
Λlx + S−1

ux
Λux

in the
Hessian block. A challenge with the system (8) is that it becomes inevitably
ill-conditioned as the optimization approaches a solution. Intuitively this can be
seen by noting that as µ → 0, some elements of the diagonal block D become
very small and some become unbounded, since for active constraints the slack
variables tend to zero, while for inactive constraints the Lagrange multipliers
do. For more details on this ill-conditioning see, e.g., [27,12]. The system (8)
is unsymmetric, and it is common to consider many equivalent but symmetric
systems instead. Our implementation uses the doubly augmented formulation,
proposed in [11]. This formulation can be derived through block-row operations
on the system in (8), by multiplying the second block row by 2BTD−1 and
adding it to the first block row:(

Q+ 2BTD−1B BT

B D

)(
∆x
∆λA

)
=

(
r1 + 2BTD−1r2

r2

)
. (9)

The major advantage is that the matrix is symmetric and positive definite for
convex problems [11]. This enables us to use a preconditioned conjugate gradient
method to solve the system efficiently. To precondition the system we use Jacobi
(diagonal scaling) preconditioning, which is motivated by the ill-conditioning
arising primarily from the diagonal D block in the matrix.
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3.2 IPM Implementation

We implement a prototype interior point method to assess the performance and
accuracy of the method when using iterative linear algebra. The following is a
brief description of the design of our implementation. Our implementation is a
primal-dual interior point method based on the KKT system formulation in (9).
We use a ratio test to determine the maximum step length to take each iteration
to maintain the positivity of the slack variables and Lagrange multipliers:

αx = min

{
1.0, γ

(
min

{
− si
∆si

: ∆si < 0

})}
αλ = min

{
1.0, γ

(
min

{
− λi

∆λi
: ∆λi < 0

})}
.

(10)

The scalar γ < 1 is to ensure strict positivity of the slacks and Lagrange mul-
tipliers throughout the optimization, and we use a value of γ = 0.99 in our
implementation. The step lengths from the line search are used to scale the
search direction.

Finally, we decrease the barrier parameter µ based value of the residuals
(shown in the right-hand side of (7)). Namely, when the 2-norm of the residuals
is smaller than the current value of µ, we divide µ by 10 and continue the
optimization. The optimizer terminates when the barrier parameter decreases
below a tolerance threshold, which by default is set to 10−6.

We summarize the main components of our implementation in Algorithm 1.
The use of a Krylov solver for our implementation provides some practical bene-

Algorithm 1 Interior Point Method

1: for i← 1 to N do
2: Find search direction by solving (8) using PCG
3: Line search for αx, αλ from (10)
4: x← x+ αx∆x
5: λ← λ+ αλ∆λ
6: s← s+ αx∆s
7: Update diagonal D in KKT system
8: Compute residuals (RHS of (7))
9: if ||r|| < µ then ▷ r is the RHS of (7)
10: if µ < µtol then
11: Return solution
12: end if
13: µ← µ/10
14: end if
15: end for

fits in how the computation is structured, as it allows us to work in a matrix-free
manner. Concretely, we do not explicitly form the 2BTD−1B term in (8) (nor

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_5

https://dx.doi.org/10.1007/978-3-031-63749-0_5
https://dx.doi.org/10.1007/978-3-031-63749-0_5


8 F. Liu et al.

the entirety of the matrix), but always work with the different components sep-
arately. This is also especially advantageous for the quasi-Newton structure of
the Hessian. as discussed in Section 2.2. Recall that the BFGS-Hessian can be
written in matrix form as H = H0 + UWUT , which is a dense n × n matrix,
where n is the number of variables in the QP. Similarly to before, this matrix is
also not explicitly formed in our solver, saving significant computational effort
when the number of variables is large.

We have implemented the method described in C++ (using BLAS for many
computational kernels), which is also the implementation we use for the experi-
ments conducted in this work.

4 Experimental setup

Table 1: Problem dimensions for the considered QPs
Problem Vars. Lin. cons. Bound cons.

Proton H&N 55770 0 90657
Proton Liver 90657 15 90657
Photon H&N 13425 42273 13425
SVM a1a 1605 1 3210

The radiation therapy optimization problems evaluated in this work are exported
directly from the RayStation optimizer. We export the QP subproblems to files
directly from RayStation which permits us to use them for our experiments,
without relying on RayStation itself. In particular, we consider three problem
cases, two cases treated using proton therapy, one for the head-and-neck region
and a liver case and one case treated using photons. The dimensions of the
corresponding optimization problems are shown in Table 1. In all considered
problems, the problems are exported from the later stages of the SQP iterations,
which are typically the most challenging.

For the SVM training problem, we use the a1a problem available from the
LIBSVM dataset [5]. We pre-compute the (dense) Hessian H using the radial
basis function kernel as described in Section 2.2.

The performance measurements were all carried out on a local workstation
equipped with an AMD Ryzen 7900x CPU with 64 GB of DDR5 DRAM. The
BLAS library used was OpenBLAS 0.3.21 with OpenMP threading. The mea-
surements of the condition number were run on a node on the Dardel supercom-
puter in PDC at the KTH Royal Institute of Technology, for memory reasons.

5 Results

In the following section, we present some experimental evaluation of our pro-
totype method in terms of convergence of the conjugate gradient solver and
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interior point solver itself, as well as the conditioning of the KKT-systems and
the computational performance.

5.1 Krylov Solver Convergence
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Fig. 1: Number of CG iterations at each IPM iteration for three different test
problems.

Fig. 1 shows the number of CG iterations required for the linear solver to con-
verge within each IPM iteration for our test problems. Note that the maximum
number of CG iterations was set to 5000 for each of the test cases, with a con-
vergence tolerance of 10−7 for the unpreconditioned residual. As a trend, we see
that all problems show a sharp increase in the number of CG iterations towards
the later IPM iterations, which is consistent with the observation that the ill-
conditioning of the systems arises when the barrier parameter µ gets close to
zero. The proton head and neck case stands out in that it has a a spike in CG
at the beginning of the optimization as well, which is also seen in the estimated
condition numbers being large in the beginning in Fig. 3. To note is that the
proton head and neck case is the only one considered without general linear
constraints (it has only variable bound constraints). For some of the considered
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cases, especially the proton liver case and SVM cases, the number of CG itera-
tions for convergence is very large, indicating that improved preconditioning is
an interesting prospect for future work.

5.2 IPM Solver Convergence
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Fig. 2: Convergence of our solver in terms of primal, dual and complementarity
infeasibility. The value of the barrier parameter µ is shown as well, which is
successively decreased as optimization progresses.

Another interesting aspect to consider is the convergence of the interior point
method as a whole. In optimization solvers, the convergence is often measured
with respect to the primal, dual and complementarity infeasibility (among oth-

ers). The primal infeasibility is the (Euclidean) norm of
(
rlA ruA

rlx rux

)T
, the

dual infeasibility is the norm of rH and the complementarity infeasibility the

norm of
(
rc1 rc2 rc3 rc4

)T
. In other words, the primal infeasibility measures the

error with respect to satisfying the constraints, the dual infeasibility measures
the error in stationarity of the Lagrangian, and the complementarity infeasibility
the error with respect to the perturbed complementary slackness condition.
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In Fig 2, we show the convergence in terms of the primal, dual and com-
plementarity infeasibility over IPM iterations for our test-problems. From the
figures, we see that the convergence towards optimality is far from monotonous,
with the spikes in the infeasibility norms coinciding with the points when the bar-
rier parameter µ is decreased in the solver. This could indicate that the update
of µ is too aggressive. The reason could be that we use a relatively crude update
rule for µ in our prototype implementation, and more sophisticated methods
may give better performance. Another interesting observation from the infeasi-
bility plots is that the dual infeasibility exhibits slower convergence compared
to the complementarity and primal infeasiblities, especially for the proton cases.

Speculatively, one can observe that the dual infeasibility rH , appears only
once in the right-hand side of (8). The block in the RHS in which the dual in-
feasibility appears is also contains multiple terms scaled by the inverse of the
slack variables, which may be large for active constraints. The doubly augmented
system (9) introduces an additional term in the top block of the RHS. In view
of Krylov methods as algorithms seeking least-norm solutions in a given Krylov
subspace for a set of linear system of equations, this may give a partial explana-
tion why the dual infeasibility lags behind in our case, as the contribution to the
RHS in the linear system from the corresponding term can be relatively small.

5.3 Numerical Stability and Conditioning of KKT System
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Fig. 3: Condition number estimates using Matlab’s condest throughout the op-
timization iterations. The bottom plot is zoomed in on the red region (with the
Photon H&N line removed for clarity). The dashed lines are condition numbers
after Jacobi preconditioning.
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As discussed previously, one of the main challenges in using iterative linear
solvers for interior point methods is the structured ill-conditioning in the linear
systems. To study how this conditioning affects our problem, we evaluate how
the condition number κ of the doubly augmented KKT system (9) that we solve
in each iteration changes throughout the optimization. The condition numbers of
the resulting matrices are estimated using Matlab’s condest function, which we
modify slightly by using Cholesky instead of LU-factorization internally, since
our matrices are symmetric positive definite. condest gives an estimate of the
condition number in the L1-norm and is based on an algorithm proposed by
Higham in [16].

Fig. 3 shows the results of the condition number analysis. The solid lines show
the un-preconditioned condition numbers, with the dashed lines showing the con-
dition numbers with Jacobi preconditioning. The un-preconditioned KKT sys-
tems for the Photon H&N and Proton Liver cases show extreme ill-conditioning,
especially in the middle of the optimization, with estimated condition numbers
up to the order 1041 for the Proton Liver case and 1023 for the Photon H&N
case. While the accuracy of Matlab’s estimation using condest at such extreme
ill-conditioning may be questioned, suffice it to say that the un-preconditioned
matrices are close to singular. However, we see that the Jacobi preconditioning
does manage to improve the conditioning of those matrices significantly, reducing
the condition number to around 108 (or less) for both cases.

5.4 Performance Analysis

VMAT H&N Proton H&N Proton Liver SVM a1a
0.0

0.2

0.4

0.6

0.8

1.0

Hessian

Linear Cons.

CG (Non MV)

KKT Misc

Other

Fig. 4: Relative (normalized) run-time spent in different computational kernels
for our solver.

Fig. 4 shows the relative time spent in different parts of the code for the three
test problems considered in this work. The absolute run-times for the different
parts is given in Table 2. The parts we included in the profiling are: Matrix-vector
multiplication with the quasi-Newton Hessian, matrix-vector multiplication with
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Table 2: Total run times in seconds spent in different parts of the solver for the
different problems. CG (Not MV) is the time spent in the conjugate gradients
solver excluding matrix-vector products. The relative times in different parts are
also visualized in Fig. 4.

Case Total Hessian Lin. Cons. CG (Not MV) KKT Misc. Other

Photon H&N 13.6 0.997 4.30 5.20 2.06 1.08
Proton H&N 6.28 4.70 0.002 0.907 0.127 0.551
Proton Liver 324 222 62.8 28.4 6.13 4.29
SVM a1a 2.78 1.96 0.256 0.367 0.157 0.035

the constraint matrix, remaining time in the CG solver (excluding matrix vector
multiplication) remaining time spent in the matrix-vector multiplication with
the doubly augmented KKT system in (9), and finally the ”Other” category
comprising the remaining time spent in other parts of the solver.

From Fig. 4, we see that for both proton cases and the SVM problem, the
solver spends the majority of the time in computing (dense) matrix-vector prod-
ucts with the Hessian, while for the photon radiation therapy problem, a signifi-
cant amount of time is spent in the CG solver itself, as well as for multiplication
with the linear constraints. Overall, we believe the performance analysis shows
that there is potential for improved performance when moving to GPU, espe-
cially for the proton radiation therapy problems and SVM problems.

6 Related Work

The topic of iterative linear solvers in interior point methods has attracted much
research, which we briefly summarize in the following section. Preconditioners for
KKT systems in interior point method have been studied extensively previously,
for instance in [2,17,14,21,7,28] among many others. A general overview of HPC
in the space of optimization and optimization software can be found in [18]. The
topic of parallel computing in optimization and operations research in general
has also been surveyed previously [24].

Practical studies where iterative linear solvers are used for different kinds
of optimization problems can be found in [22], where a type of hybrid direct-
iterative solution method is evaluated on very large problems in optimal power
flow. In the context of interior point methods for linear programming (LP),
preconditioned Krylov methods were studied in e.g.[7,6].

7 Conclusions and Future Work

In this work, we have presented our prototype interior point method for quadratic
programming that uses an iterative linear solver for the KKT systems arising
in each iteration. We demonstrate that the method can solve real optimization
problems from radiation therapy to acceptable levels of accuracy and within
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reasonable time. From analyzing the performance of our implementation using
tracing and profiling, we believe that our method is suitable for GPU accel-
eration, which we will investigate further in future work. Overall, we believe
that interior point methods using Krylov solvers give a promising path forward
for GPU accelerated interior point methods, which hold great promise for e.g.
computational efficiency in treatment plan optimization for radiation therapy.

There are many interesting questions and problems remaining for future re-
search. Among those is the porting of the code to be able to run on GPU ac-
celerators and looking at improved preconditioners for the KKT systems. One
concrete possiblity for improved preconditioning would be to consider a method
similar to the one proposed in [1], based on low-ranks updates of a factorized
Schur-complement. For some of the problems considered in this paper with only
a few linear constraints, and thus a correspondingly small Schur complement,
explicit re-factorization of the Schur complement may be so cheap that the low-
rank update scheme is not required at all. Finally, another interesting possibility
for future work is to investigate the suitability of the proposed method for opti-
mization problems from other domains.
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