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Abstract. Physics-Informed Neural Networks (PINNs) are a promising
application of deep neural networks for the numerical solution of nonlin-
ear partial differential equations (PDEs). However, it has been observed
that standard PINNs may not be able to accurately fit all types of PDEs,
leading to poor predictions for specific regions in the domain. A common
solution is to partition the domain by time and train each time interval
separately. However, this approach leads to the prediction errors being
accumulated over time, which is especially the case when solving “stiff”
PDEs. To address these issues, we propose a new PINN training scheme,
called DP-PINN (Dual-Phase PINN). DP-PINN divides the training into
two phases based on a carefully chosen time point ts. The phase-1 train-
ing aims to generate the accurate solution at ts, which will serve as the
additional intermediate condition for the phase-2 training. New sam-
pling strategies are also proposed to enhance the training process. These
design considerations improve the prediction accuracy significantly. We
have conducted the experiments to evaluate DP-PINN with both “stiff”
and non-stiff PDEs. The results show that the solutions predicted by DP-
PINN exhibit significantly higher accuracy compared to those obtained
by the state-of-the-art PINNs in literature.

Keywords: Physics-Informed Neural Networks · Partial Differential Equa-
tions · Model Training · Data Sampling.

1 Introduction

Traditional physics-based numerical methods [1][6][15] have had great success in
solving partial differential equations (PDEs) for a variety of scientific and engi-
neering problems. While these methods are accurate, they are computationally
intensive for complex problems such as nonlinear partial differential equations
and often require problem-specific techniques. Over the past decade, data-driven
methods have gained significant attention in various areas of science and engi-
neering. These methods can identify highly nonlinear mappings between inputs
and outputs, potentially replacing or augmenting expensive physical simulations.
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However, typical data-driven deep learning methods tend to ignore a physical
understanding of the problem domain [5].

In order to incorporate physical priors into the model training, a new deep
learning technique, Physics-Informed Neural Networks (PINNs)[10], has been
proposed. Propelled by vast advances in computational capabilities and train-
ing algorithms, including the availability of automatic differentiation methods,
PINNs combine the idea of using neural networks as generalized function ap-
proximator for solving PDEs[4] and the idea of using the system of PDEs as
physical priors to constrain the output of the neural networks, which makes
neural networks a new and effective approach to solving PDEs.

The original PINN algorithm proposed in [10], hereafter referred to as the
“standard PINN”, is effective in estimating solutions that are reasonably smooth
with simple boundary conditions (e.g., the specific boundary values are given),
such as the viscous Burger’s equation, Poisson’s equation, Schrödinger’s equation
and the wave equation. On the other hand, it has been observed that the standard
PINN has the convergence and accuracy problems when solving “stiff” PDEs [3]
such as the nonlinear Allen-Cahn equation, where solutions contain sharp space
transitions or fast time evolution.

To solve these problems, numerous methods have been proposed recently,
including bc-PINN[7], the time adaptive approach[14] and SA-PINN[8]. Among
them, bc-PINN is especially noteworthy for its simple and intuitive philosophy.
Since the stiff PDE has sharp, fast space/time transitions[13], it is hard to predict
a domain as a whole. The key idea of bc-PINN is to retrain the same neural
network for solving the PDE over successive time segments while satisfying the
already obtained solutions for all previous time segments.

However, our analysis reveals that that the training scheme in bc-PINN may
lead to a progressive accumulation of prediction errors across successive time
segments. Our explanation for this phenomenon is that after bc-PINN trains
the solutions in a time segment, the trained results are used as the ground truth
to train the solutions in subsequent segments. Consequently, since the predictions
in initial segments inevitably contain inaccuracies, these errors propagate and
amplify throughout the training process for later segments.

To address this issue, we propose a new training method called DP-PINN.
In DP-PINN, the training is divided into two distinct phases. The division is
informed by our observations in the benchmark experiments with existing PINN
methods. Our benchmark experiments revealed that the prediction errors became
notably more severe after a certain point (denoted as ts) within the time domain
[tstart, tend], where tstart is usually 0. In DP-PINN, we use ts as the pivotal time
point in the dual-phase training scheme.

In phase 1, DP-PINN focuses on training the network to predict solutions
from tstart (i.e., 0) to ts. In phase 2, we diverge from the bc-PINN’s practice of
using the entire solutions predicted within [0, ts] as the ground truth for subse-
quent training during (ts, tend], Rather, we found that what is more important
is the accuracy of the solutions predicted at ts. In phase 1 of DP-PINN, we will
obtain the predicted solutions on ts.
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In phase 2, we extend the training across the entire time domain [0, tend] using
the same neural network architecture. This phase not only trains the network
for (ts, tend], but also continue to refine the solutions in [0, ts]. Crucially, the
solutions predicted at ts serve as “intermediate” conditions (augmenting the
original boundary and initial conditions of the PDE) to guide the training in
phase 2.

To improve the accuracy of predictions at ts and overall model accuracy, we
propose the new sampling strategies in DP-PINN. With the use of intermediate
conditions and the new sampling strategies, DP-PINN is able to achieve much
higher accuracy than the state-of-the-art methods.

In summary, DP-PINN incorporates three optimization strategies to enhance
its prediction accuracy, particularly in solving complex PDEs such as Allen-
Cahn equation. These strategies include: i) strategically dividing the network
training into two phases around a specifically identified point ts, ii) leveraging
the predictions at ts obtained in phase 1 as the extra “intermediate” conditions
to improve accuracy in subsequent predictions, and iii) incorporating the new
sampling strategies to improve the accuracy of solutions at ts obtained in phase
1. Together, these strategies enpower DP-PINN to effectively solve a variety of
PDEs, including the stiff PDE - the Allen-Cahn PDE, with significantly higher
accuracy than other state-of-the-art PINN algorithms. We have conducted the
experiments to validate the effectiveness of DP-PINN.

2 Related Work

The standard PINN algorithm can be unstable during training and produce
inaccurate approximations around sharp space and time transitions or fail to
converge entirely in the solution of ”stiff” PDEs, such as the Allen-Cahn equa-
tion. Much of the recent studies on PINNs has been devoted to mitigating these
issues by introducing modifications to the standard PINN algorithm that can
increase training stability and accuracy of the approximation, mostly via split-
ting the solution domain evenly into several smaller time segments, or by using a
weighted loss function during training. We discuss the main approaches of those
below.

Non-Adaptive Weighting. The work in [14] points out that the neural
network should be forced to satisfy the initial condition closely. Accordingly, a
loss function with the form, L(θ) = Lb(θ)+CLI(θ)+Lr(θ), was proposed, where
C (C ≫ 1) is a hyper-parameter.

Adaptive weighting. In [8], PINNs are trained adaptively, using the fully-
trainable weights that force the neural network to focus on the difficult regions
of the solution, which is an approach reminiscent of soft multiplicative attention
masks used in Computer vision[9][12]. The key idea is to increase the weights as
the corresponding losses increase, which is accomplished by training the network
to minimize the losses while maximizing the weights.

Backward compatible PINN. In [7], the proposed method, termed back-
ward compatible PINN (bc-PINN), addresses the limitation of retraining a sin-

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63749-0_2

https://dx.doi.org/10.1007/978-3-031-63749-0_2
https://dx.doi.org/10.1007/978-3-031-63749-0_2


4 Yan and He

gle neural network over successive time segments by ensuring that the network
satisfies the solutions obtained in all previous time segments (i.e., treating the
solutions in previous time segments as the ground truth for the training in sub-
sequent time segments) during the progressive solution of a PDE system. The
bc-PINN divides the time axis into several even time intervals, ensuring a com-
prehensive and backward-compatible solution across the entire temporal range.

Time-Adaptive Approaches. In [8], the time axis is divided into several
time intervals, then PINNs are trained on them, either separately or sequen-
tially. The initial condition for each time interval relies on the predictions in the
preceding time step. This approach is time consuming due to the dependency
between time steps and and the need for training multiple PINNs.

3 Method

In this section, we first give a brief overview of PINN. Next, we present DP-
PINN. Finally, we describe the sampling method used in DP-PINN.

3.1 Overview of Standard PINN and Motivation of DP-PINN

Overview of Standard PINN The general form of the PDE solved by PINN
can be defined as follows:

ut +N [u] = 0, x ∈ Ω, t ∈ [0, tend], (1)

u(x, t) = g(x, t), x ∈ ∂Ω, t ∈ [0, tend], (2)

u(x, 0) = h(x), x ∈ Ω (3)

where x is a spatial vector variable, which includes a vector of spatial points
on which we need to find solutions of u, t is time, ut is the partial derivative
of u over t, Ω is a subset of Rd (d is the dimension of the space), ∂Ω denotes
the set of all boundary spatial vector variables where the boundary conditions
of the PDE are enforced, and N [·] is non-linear differential operator. Note that
Equations (2) and (3) represent the boundary conditions and initial conditions
of the PDE, respectively.

the solution u(x, t) is approximated by the output uθ(x, t) of the deep neural
network (θ denotes the network parameters) with inputs x and t. The residual,
rθ(x, t), is defined as:

rθ(x, t) =
∂

∂t
uθ(x, t) +N [uθ(x, t)], (4)

where all partial derivatives can be computed by automatic differentiation meth-
ods [2]. With the use of back-propagation [11] during training, the parameters θ
can be obtained by minimizing the following loss function:

L(θ) = Lb(θ) + LI(θ) + Lr(θ) (5)
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where Lb is the loss corresponding to the boundary condition, LI is the loss
due to the initial condition, and Lr is the loss corresponding to the residual.
Lb,LI ,Lr are essentially penalties for outputs that do not satisfy (2), (3) and
(4) respectively. Lb, LI and Lr can be defined by Equations (6)-(8), respectively.

Lb(θ) =
1

Nb

Nb∑
i=1

|[uθ(x
i
b, t

i
b)− g(xi

b, t
i
b)]|2, (6)

LI(θ) =
1

NI

NI∑
i=1

|uθ(x
i
I , 0)− h(xi

I)|2, (7)

Lr(θ) =
1

Nr

Nr∑
i=1

|rθ(xi
r, t

i
r)|2 (8)

where {xi
I}

NI
i=1 and {h(xi

I)}
NI
i=1 denote the initial points of the PDE and

their corresponding values; {xi
b, t

i
b}

Nb
i=1 and {g(xi

b, t
i
b)}

Nb
i=1 are the points on the

boundary of the PDE and their values; {xi
r, t

i
r}

Nr
i=1 is the set of collocation points

randomly sampled from the domain Ω; Nb, NI and Nr denote the number of
boundary points, initial points and the collocation points, respectively. To tune
the parameters θ of the neural network, the training is done for 10k iterations of
Adam, followed by 10k iterations of L-BFGS, consistent with the related work
for a fair comparison in the experiments. L-BFGS uses Hessian matrix (second
derivative) to identify the direction of steepest descent.

Motivation of DP-PINN We conducted the experiment to use bc-PINN to
train the model for solving Allen-Cahn (AC) equation, known for its stiff na-
ture. Figure 1 shows the distribution of its prediction errors (L2-error) across the
domain. It can be observed that prediction errors escalate as the training pro-
gresses over time. This outcome can be attributed to bc-PINN’s unique training
approach. bc-PINN divided the entire time domain into four discrete segments,
and train the model sequentially across these segments. This scheme allows bc-
PINN to focus on smaller, more manageable portions of the time domain at
any given moment, which effectively circumvents the challenges faced by the
standard PINN that train across the full domain simultaneously. Initially, pre-
diction errors within the early segments may appear harmless. Nonetheless, as
the training adopts the outcomes of preceding segments as the groundtruth for
training in subsequent ones, prediction errors will accumulate as more segments
are processed.

The benchmark experiments with bc-PINN provided insights that led us to
propose the ideas in our DP-PINN. A key observation is that bc-PINN tends
to generate more accurate predictions in the initial segments of the time do-
main. This can be attributed to two main factors. Firstly, by focusing on a
smaller time segment, as opposed to tackling the entire time domain in a single
sweep like standard PINN, the model is better positioned to learn the features
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Fig. 1. bc-PINN’s absolute prediction error on Allen-Cahn equation.

and relationships among points. This reduced time span simplifies the learn-
ing process, enabling more precise predictions. Secondly, the proximity of the
early segment to the initial conditions, which are the true ground truth, allows
the model to more accurately capture the genuine relationships between points.
As the training progresses to points further from the initial conditions, the re-
liance on previous predictions introduces a compounding effect of inaccuracies.
This observation underpins the rationale of the dual-phase training adopted in
DP-PINN, aiming to mitigate the propagation of errors.

The core principle behind our DP-PINN involves identifying a critical time
point, ts, beyond which prediction errors notably intensify. We divide the model
training into two phases. In phase 1, DP-PINN aims to generate the predictions
at ts as accurate as possible. Subsequently, in the phase-2 training, the predic-
tions at ts act as the initial condition for training the model over the subsequent
time segment (ts, tend]. We anticipate an enhancement in prediction accuracy
for (ts, tend] according to the understanding gleaned from bc-PINN, where pre-
dictions are more accurate in segments closer to the initial conditions. We will
present the dual-phase training scheme in subsection 3.2.

In light of the core principle underpinning DP-PINN, an important objective
is to achieve utmost accuracy in predictions specifically at ts. The accuracy of
these predictions at ts first depends critically on the selection of ts within the
time domain. Identifying a optimal ts presents a challenge: it must be neither
too close to the initial condition at time 0 nor excessively distant. The rationale
behind this balance is that because the solutions predicted at ts will be used
as the initial condition for the training over (ts, tend], smaller ts means that
some points in (ts, tend] are further away from their initial conditions and may
consequently yield more inaccurate predictions.

In order to obtain an appropriate ts and generate accurate predictions at
ts, we first conducted benchmark experiments designed to map out the trend
of prediction errors across the time domain, thereby establishing an empirical
foundation for selecting ts. Second, in the phase-2 training of DP-PINN, we
incorporate a trainable parameter η in the model to fine-tune the prediction val-
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ues at ts. The approach of empirical determination of ts followed by fine-tuning
with η is instrumental in optimizing the accuracy of DP-PINN’s predictions and
enhancing the model’s overall effectiveness.

Number of Sampling Points

5k 10k 20k

Relative L2 error 3.391e-3 1.375e-3 2.297e-3
Table 1. Training accuracy of the standard PINN on the 1D viscous Burger’s equation
with different numbers of sampling collocation points. The numbers of initial points and
boundary points were kept unchanged, which are Ni = 100 and Nb = 50 respectively,
in the three sets of sampling points.

Another strategy of generating accurate predictions at ts stems from another
observation we made in the benchmark experiments. We applied the standard
PINN to train the model with different numbers of sampling points, as shown in
Table 1. These experiments revealed a relationship between the number of sam-
pling points and model accuracy: increasing the sampling density generally led
to more accurate training results. However, too many sampling points resulted
in a decline in model performance, likely due to overfitting. The reason for this
trend may be because while a sparse distribution of sampling points challenges
the model’s ability to learn underlying relationships, excessively dense sampling
may cause the model to memorize the training data too closely, losing its gen-
eralization capability.

Building on this understanding, we tailor the sampling strategy for DP-PINN
to circumvent these issues. Unlike bc-PINN, which samples the same number of
points in each time segment, DP-PINN adopts a differentiated approach. Specifi-
cally, we allocate a higher density of sampling points to the phase-1 training. This
targeted increase in sampling density for phase-1 training is strategic, aimed at
obtaining highly accurate predictions at ts. We will present our sampling strate-
gies in subsection 3.3.

3.2 DP-PINN

Based on the discussions in subsection 3.1, we propose a dual-phase training
scheme for PINNs. In phase 1, the model is trained on the sampled points in
the time duration [0, ts], and predicts the solutions at ts. In phase 2, the same
model undergoes training across the entire domain, integrating the predictions
at ts as the intermediate condition, which also acts as the initial condition for
the training in (ts, tend]).

The phase-1 training in DP-PINN takes as input the initial conditions of the
PDE, the boundary conditions of the points that fall in [0, ts], and trains the
model on the collocation points in [0, ts]. The loss function used by the phase-1
training is defined in Equation 9, where LI(θ) is the one defined in Equation
7, representing the initial conditions; Lb1(θ) represents the compliance to the
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boundary conditions of the points in the phase-1 domain, which is defined in
Equation 10; Lr1(θ) represents the residual of the predicted solution on the
collocation points in the phase-1 domain, which is defined in Equation 11; C is
a hyper-parameter described in [14], which acts as a weight of the LI(θ) term in
the overall loss function.

L1(θ) = Lb1(θ) + CLI(θ) + Lr1(θ) (9)

Lb1(θ) =
1

Nb1

Nb1∑
i=1

|[uθ(x
i
b1, t

i
b1)− g(xi

b1, t
i
b1)|2, (10)

Lr1(θ) =
1

Nr1

Nr1∑
i=1

|rθ(xi
r1, t

i
r1)|2, (11)

In the phase-2 training, the model is trained across the entire domain [0, tend].
Therefore, the original boundary conditions, initial conditions of the PDE are
used as the input of the phase-2 training. this phase extends the evaluation of
the model’s residual to include all sampled collocation points within the entire
domain. Moreover, the solutions at time ts predicted in the phase-1 training
are used as an additional condition in the phase-2 training. Based on these, the
loss function for the phase-2 training is defined in Equation 12, where Lb(θ) is
the one defined in Equation 6, representing the original boundary conditions of
the PDE; Lts(θ,η) represents the additional intermediate condition established
based on the solutions predicted in the phase-1 training at time ts.

The term Lts(θ,η) is defined in Equation 13, where u′(xts , tts) are the values
predicted in phase 1 for the collocation points at ts, and η = (η1, ..., ηNts ) is
a set of trainable parameters aimed at fine-tuning the predicted values for the
Nts collocation points (i.e., xi

ts) at ts. Lts(θ,η) essentially calculates the residual
of the predictions at ts in phase 2 by treating the phase-1 predictions at ts as
“prior”. The parameter η is updated using Equation 14 with k indicating the
learning step and µk the step-specific learning rate.

The base value of ts is set to be 30% of the entire time domain. This is an em-
pirical value gathered through our benchmark experiments. For example, in the
experiments shown in fig. 1, prediction errors were not significantly pronounced
at t = 0.3 (given a total time span of 1) according to our experimental records.

L2(θ,η) = Lb(θ) + CLI(θ) + Lr(θ) + Lts(θ,η) (12)

Lts(θ,η) =
1

Nts

Nts∑
i=1

|uθ(x
i
ts , ts)− ηi ∗ u′(xi

ts , ts)|
2 (13)

η(k + 1) = η(k)− µk∇ηL2(θ,η) (14)
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3.3 Sampling Methods

We propose two sampling strategies to provide the training points for DP-PINN.
Nr and Nb denote the set of collocation and boundary points sampled in the
entire domain, respectively.Nr1 andNb1 denote the set of collocation and bound-
ary points for the phase-1 training, respectively. Nr1 ⊂ Nr and Nb1 ⊂ Nb. NI

denotes the set of initial points. Nts denotes the set of collocation points sam-
pled at time ts. In both sampling strategies proposed in this work, we comply
with the constraint that the total numbers of sampled collocation points and
boundary points that are input for training are no more than |Nr| and |Nb|,
respectively.

Fixed sampling strategy Unlike [7] and [14], where the time axis is evenly
split into multiple time intervals (e.g., bc-PINN uses 4 intervals), our approach
contains two time intervals [0, ts] and (ts, tend]. In the phase-1 training, i.e.,
the training in [0, ts], the number of sampled collocation points is determined
by Equation 15, where ts

tend
× |Nr| is the number of collocation points that is

proportional to the ratio of ts to tend, and therefore α can be regarded as an
amplification factor that increases the sampling density in phase-1. α is a hyper-
parameter in training.

|Nr1| = α× ts
tend

× |Nr| (15)

Similarly, the number of sampled boundary points is determined by Equation
16.

|Nb1| = α× ts
tend

× |Nb| (16)

In the phase-2 training, the model is trained using the points sampled from
both the initial intervals [0, ts] and the subsequent interval (ts, tend]. In the fixed
sampling strategy, the set of sampled points in [0, ts] in the phase-2 training
remains the same as that in the phase-1 training (i.e., Nr1 and Nb1). To adhere
to the constraint that the total number of collocation points and boundary points
used for training does not exceed |Nr| and |Nb|, respectively, we sample |Nr| −
|Nr1| collocation points and |Nb| − |Nb1| boundary points within (ts, tend] for
phase-2 training. Compared to proportional sampling strategy to be presented
next, this sampling strategy is deliberately designed to prioritize the accuracy
of predictions at the initial stages of the timeline. This focus is particularly
important for effectively addressing “stiff” PDEs ,such as Allen Cahn equation,
where inaccuracies in early predictions can quickly magnify as the model extends
to later time points.

Proportional sampling strategy In the former sampling strategy, we pre-
serve the sampling density within [0, ts] for phase-2 training but sacrifice the
sampling density for the subsequent interval (ts, tend] due to the constraint on
the total number of sampling points. In the proportional sampling strategy, after
completing phase-1 training, we randomly select a proportion of the total collo-
cation points, ts

tend
×|Nr|, and boundary points, ts

tend
×|Nb|, from the initial sets
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Nr1 and Nb1 to use during the [0, ts] interval of phase-2 training. For the remain-
ing time span (ts, tend], we then allocate the rest of the points, (1− ts

tend
)× |Nr|

for collocation and (1− ts
tend

)× |Nb| for boundary points.

This strategy adjusts the distribution of sampling points in phase-2 training,
reducing the number during [0, ts] so that the number of points in each interval
is proportional to their respective durations. Contrary to fixed sampling, which
allocates more sampling points to the early time points, this proportional sam-
pling strategy increases the focus on the later stages (after ts) in the phase-2
training. This strategy is suited for simpler, non-stiff PDEs.

4 Results

We conducted the experiments to compare our DP-PINN with the state-of-the-
art PINN algorithms in literature, SA-PINN[8], BC-PINN[7] and TA (Time-
Adaptive) approach[14]. We also used the standard PINN to solve the tested
PDEs, whose performance is reported as a baseline. We applied the above PINNs
to solve the Allen-Cahn PDE and the Burger’s equation.

We carried out the experiments on these two PDEs because the Allen-Cahn
equation, as a “stiff” PDE, is regarded as a most challenging benchmark and
used in the experiments of all the three state-of-the-art PINN algorithms. The
Burger’s equation is relatively easier to solve (non-stiff) and is used as the bench-
mark in the experiments of SA-PINN. The Burger’s equation is solved in our
experiments in order to demonstrate the generalization of DP-PINN in solving
non-stiff PDEs.

Same as in the literature, we use relative L2-error as the metric to measure the
performance of the PINN algorithms. Relative L2-error is defined by Equation
17, where NU is the set of sampled points in the entire domain; u(x, t) and
U(x, t) represent the predictions and the ground truth at the point x and time
t, respectively.

ErrorL2 =

√∑NU

i=1 |u(xi, ti)− U(xi, ti)|2√∑NU

i=1 |U(xi, ti)|2
(17)

4.1 Allen-Cahn Equation

The Allen-Cahn reaction-diffusion equation is commonly used in the phase-field
models, which are often used to model solidification and melting processes, pro-
viding insights into the behavior of phase boundaries during these transforma-
tions. In this experiment, the Allen-Cahn PDE considered is specified as follows:
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ut − 0.0001uxx + 5u3 − 5u = 0, x ∈ [−1, 1], t ∈ [0, 1], (18)

u(0, x) = x2cos(πx), (19)

u(t,−1) = u(t, 1), (20)

ux(t,−1) = ux(t, 1) (21)

Unlike other PDEs solved by PINNs, Allen-Cahn equation is a nonlinear
parabolic PDE that challenges PINNs to approximate solutions with sharp space
and time transitions, and also introduces periodic boundary conditions (eq:20-
21).

In order to deal with this periodic boundary conditions, the loss function
Lb(θ) and Lb1(θ) defined in Equations 6 and 10 are replaced by:

Lb(θ) =
1

Nb

Nb∑
i=1

|uθ(−1, tib)− uθ(1, t
i
b)|2 + |uxθ(−1, tib)− uxθ(1, t

i
b)|2, (22)

Lb1(θ) =
1

Nb1

Nb1∑
i=1

|uθ(−1, tib1)− uθ(1, t
i
b1)|2 + |uxθ(−1, tib1)− uxθ(1, t

i
b1)|2, (23)

The neural network architecture is fully connected with 4 hidden layers, each
with 128 neurons. The input layer takes two inputs (two neurons) - x and t.
The output is the prediction of uθ(x, t). This architecture is identical to that
used in [14] and [8], which allows a fair comparison. We set the number of
collocation, initial and boundary points to |Nr| = 20000, |NI | = 100 and |Nb| =
100. The amplification factor α as a hyper-parameter is set to 1.6. The number
of the points sampled at time ts for the phase-1 training is set to |Nts | = 100,
excluding the points at the boundary. ts is set to 0.3, and the trainable co-
efficient η in Equation 13 are initialized following a uniform distribution in the
range of [0,1). Mini-batches are used in training, with the batch size of 32.
All experiments underwent 10 independent runs with random starts and the
performance reported is the average over the 10 runs.

Table 2 shows the performance of different PINNs in solving the Allen-Cahn
equation. Comparing to other state-of-the-art algorithms, DP-PINN can achieve
a much lower relative L2 error, which is 0.84% ± 0.29%. Note that standard
PINN cannot solve the Allen-Cahn equation.

Figure 2 visualizes the numerical solutions and prediction errors obtained by
DP-PINN in Table 2. Comparatively, figure 1 visualizes the prediction errors
obtained by bc-PINN in this experiment. It can be seen from the figures that
the predictions made by DP-PINN are very accurate.

4.2 1D viscous Burger’s Equation

The 1D viscous Burger’s equations with Dirichlet boundary conditions are for-
malized as follows:
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Table 2. Comparing the performance of different PINN algorithms in solving the
Allen-Cahn equation. When testing the PINN algorithms in literature, the settings are
exactly same as those reported in the literature whenever applicable.

Methods Relative L2-Error

standard PINN 99.18% ± 0.54%

Time-adaptive approach 7.55% ± 1.03%

SA-PINN 2.06% ± 1.33%

bc-PINN 1.67% ± 0.89%

DP-PINN (fixed sampling) 0.84% ± 0.29%

Fig. 2. Visualization of the solutions of Allen Cahn equation and their prediction errors
obtained by DP-PINN. The two plots on the top are the predicted solution (left) and
the prediction errors (right) across the domain. The four plots at the bottom are the
predicted solution at 4 different time point.
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ut + uux − (0.01/π)uxx = 0, x ∈ [−1, 1], t ∈ [0, 1], (24)

u(0, x) = −sin(πx), (25)

u(t,−1) = u(t, 1) = 0. (26)

In this set of experiments, the neural network architecture is fully connected
with 8 hidden layers, each with 20 neurons. This architecture is identical to [10]
and [8]. We set |Nr| = 10000, |Nb| = 50 and |NI | = 100 for all PINNs, which is
the common setting in [10] and [8]. All training is done by 10k Adam iterations,
followed by 10k L-BFGS iterations, which is the same as those used in literature.
For DP-PINN, |Nts | = 256. η is initialized in the same way as in the previous
experiment. In this experiment, we only compared our DP-PINN with SA-PINN
since other two state-of-the-art PINN algorithms (bc-PINN and Time Adaptive)
are not tested on this simpler PDE.

The performance of different PINN methods are listed in table 3. From this
table, we can see that DP-PINN achieves slightly better performance than SA-
PINN. The improvement is not as prominent as with Allen Cahn equation be-
cause Burger’s equation is easy to solve. The state-of-the-art PINN method
(SA-PINN) can already generate very accurate solutions.

Table 3. Performance of different PINNs algorithms in solving Burger’s equation

Methods Relative L2 error

Standard-PINN 1.375e-3 ± 1.191e-3

SA-PINN 4.685e-4 ± 1.211e-4

DP-PINN 4.595e-4 ± 1.381e-4

Figure 3 visualizes the solutions of the Burger’s equation and their prediction
errors obtained by DP-PINN in Table 3. Once again, the solutions generated by
DP-PINN are very accurate.

5 Conclusion and Future Works

In this paper, we develop a new training method for PINN, called DP-PINN,
to address the limitations of the existing PINNs in solving “stiff” PDEs. By
dividing the training into two phases at a carefully chosen time point ts, DP-
PINN significantly reduces prediction errors that accumulate over time in the
existing methods like bc-PINN. The first phase of DP-PINN focuses on training
the network and predicting accurate solutions at ts, while the second phase trains
the entire time domain, using the solutions at ts as an intermediate condition.
The experiments were conducted to compare DP-PINN with the state-of-the-art
PINNs in solving Allen Cahn equation (stiff PDE) and Burger’s equation (non-
stiff PDE). The results show that DP-PINN achieve much higher performance
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Fig. 3. Visualization of the solution of the 1D viscous Burger’s equation and the pre-
diction errors obtained by DP-PINN. The two plots on the top show the predicted
solution (left) and prediction error (right) across the entire domain. The plots at the
bottom show the predicted solutions at three different time points.

in terms of relative L2 error in solving Allen Cahn equation. DP-PINN only
achieves slightly lower related L2 error in solving Burger’s equation because it
is easier to solve and the existing methods already performs very well. Despite
the aforementioned achievements, some further work can be conducted. On the
one hand, there have not been theoretical analyses about the impact of network
size on the approximation accuracy of PDE solutions, which will be part of our
future work. On the other hand, we would like to explore the techniques for
solving PDEs from other application domains such as chemistry and biology.
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