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Abstract. Psychogenic Non-Epileptic Seizure (PNES) represents a neu-
rological disorder often diagnosed and pharmacologically treated as epilepsy.
PNES subjects show the same symptoms as epileptic patients but do not
have an EEG characterized by ictal patterns during psychogenic seizures.
Diagnosis requires an EEG video, but this methodology is very time-
consuming and dispensable in both time and cost. Our paper aims to
define a novel methodology to support the clinical diagnosis of PNES by
analyzing electroencephalographic (EEG) signals obtained in resting con-
ditions. In this case, it is unnecessary to induce seizures in the subjects.
A software pipeline was implemented based on robust feature extrac-
tion methods used in quantitative EEG analysis in the clinical setting,
integrating them with machine learning classifiers. Unlike other similar
works, the methodology was tested on a large dataset consisting of 225
EEGs (75 healthy, 75 PNES and 75 subjects with epilepsy), showing that
it has a classification accuracy greater than 85%.
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1 Introduction

There is a growing body of literature on the COVID-19 pandemic’s impact on
patients with chronic neurological conditions. These studies include the direct ef-
fect of infection with the novel SARS-CoV-2 virus and the wide-reaching societal
implications of the pandemic. This global crisis has had a profound psychological
impact, perhaps more severe in people with seizures. Patients with more frequent
attacks at baseline were more susceptible to worsening and increased stress, and
barriers to care appeared to play significant roles in their deterioration. In [13],
the authors reported an aggravation of the seizure frequency in PNES (Psy-
chogenic Non-Epileptic Seizures) patients, a vulnerable group of people during
this pandemic COVID-19. Among a cohort of 18 subjects with PNES, 22.2%
reported an improvement in seizure control during the peak of the COVID-19
pandemic in New York City [11].
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Psychogenic non-epileptic seizures are sudden behavioural changes simulating
epileptic seizures but without EEG ictal patterns, caused by psychic alterations
(3], [7], [1], [12].

The gold standard for PNES diagnosis is video-electroencephalography (video-
EEG), during which seizures are recorded spontaneously or provoked by stimu-
lation techniques.

EEG recordings alone are insufficient to diagnose PNES because an ictal
scalp EEG may reveal no epileptic characteristics during simple partial seizures
or mesial frontal lobe seizures. In addition, the discrimination between non-
epileptic seizures and healthy subjects can be challenging. Moreover, differential
diagnosis cannot rely only on clinical features of PNES because most of the signs
are associated with epileptic seizures. PNES patients simulate the different types
of epileptic seizures but no epileptic seizures EEG patterns.

A wrong diagnosis with epilepsy may direct to treatments through anti-
epileptic drugs. However, it has been assessed that the correct diagnosis of PNES
is usually postponed for an average of seven years [5], with a profound conse-
quence on patients’ and caregivers’ quality of life [10].

Additionally, EEG video-monitoring is highly time-consuming and labour
intensive and, therefore, relatively expensive and limited in availability; thus,
alternative diagnostic procedures are necessary to support neurologist diagnosis
and proper pharmacological treatment.

Despite many efforts made, no bio-marker of PNES has yet been identified.
However, in [15], the authors sustain patients with PNES have a stable frequency
of rhythmic movements, about (5Hz).

Continuous wavelet transform is used in [6] to process controls (CNT) and
PNES EEG signals. In [14], a novel machine learning (ML) pipeline for clas-
sifying EEG epochs of PNES and healthy controls is described. The authors
propose a semi-automatic signal processing technique and a supervised ML clas-
sifier to support the discriminative clinical diagnosis of PNES. In addition, they
extracted statistical features like the mean, standard deviation, kurtosis, and
skewness from a power spectral density (PSD) map split up into the five EEG
bands. Finally, they compared three different supervised ML algorithms, namely,
the Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), and
Bayesian network (BN), to classify control vs PNES subjects. The authors tested
the proposed methodology on a small dataset of 20 EEG signals (10 PNES and
10 control), reaching an average accuracy above 90%.

To the best of our knowledge, only a few studies have investigated semi-
automatic or automatic machine learning-based approaches for discrimination
between healthy, epileptic and PNES subjects by only considering EEG record-
ings. Furthermore, the current study is one of the few in which an EEG dataset
without any correlated video-EEG PNES marker has been analyzed to discrim-
inate PNES via EEG.

Specifically, this paper proposes a novel and semi-automatic pipeline to dis-
criminate between healthy, PNES and epileptics subjects based on the extrac-
tion of spectral features from EEG signals and classification through Machine
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Learning-based approaches. To design a software pipeline that allows discrim-
ination, we have implemented different classifiers, i.e. Light Gradient Boosting
Machine, Random forest, Decision tree and Linear Discriminant Analysis. We
analyzed 75 EEGs for each class (healthy, PNES and epileptic) in our work. The
results achieved in terms of classification accuracy are higher than 80%.

The paper is organized as follows: Section 2 introduces the implemented EEG
methodologies; Section 3 presents and discusses the results obtained from the
proposed software pipeline. Finally, Section 4 concludes the paper.

2 Methods

In this section we describe the methodologies implemented for EEG analysis.
Figure 1 illustrates the main steps that are:

— EEG acquistion: This module performs standard EEG acquisition accord-
ing to the 10/20 international standard,;

— Pre-processing: This module performs digital filtering and EEG segmen-
tation into epochs;

— Features extraction: The Power Spectral Density (PSD) function is esti-
mated for each channel using the classical Welch method. From PSD func-
tions, cumulative power coefficients in clinical EEG bands are calculated to
create a features vector to feed in input to the classifier module;

— EEG classification: the framework implements a pool of classifiers, such as
Linear Discriminant Analysis, Decision Tree, Random Forest and Light Gra-
dient Boosting Machine to discriminate healthy, PNES and epileptic EEGs
acquired in resting conditions.

EEG acquisition Features extraction

* EEG electrodes * Power Spectral * Machine learning
positioned « Semi-automatic Density (PSD) approaches, such
according to artefact rejection * Cumulative power as Linear
Standard « Digital filtering coefficients in Discriminant
International « Epochs clinical bands Analysis, Decision
10/20 System p Tree, Random

segmentation Forest and Light

Gradient Boosting
Machine

Fig. 1. EEG data analysis pipeline.

2.1 EEG Pre-processing

In general, EEG signals acquisition is very difficult because the signals are very
weak and are contaminated by environmental noise or distorted by physiological
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artefacts (i.e. ocular and muscle artefacts). Therefore, removing noise is a funda-
mental step in EEG signals processing and classification. A proper data cleaning
may improve the signal to noise ratio and allow for the discrimination of the most
meaningful features from the EEG signals. In clinical practice, the artefacts’
detection is performed visually by trained neurologists by discarding contami-
nated EEG epochs. Therefore, the pre-processing stage is operator-dependent,
monotonous and time-consuming.

In this study, each EEG recording was inspected by a qualified neurologist
to mark noise and artefact corrupted epoch (see Figure 2). Afterwards, all EEG
data were pre-processed using digital filtering techniques. Specifically, we have
employed a Butterworth band-pass filter (0.1-70 Hz) and a notch filter (cut-off
frequency 50 Hz) to reduce high-frequency artefacts and power-line interference
(see Figure 3).
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Fig. 2. An example of EEG signals acquired from some electrodes positioned on the
frontal and central lobes (the time of acquisition is indicated on the x-axis; the ampli-
tude values in mV are reported on the y-axis).

After noise removal, EEG signals were segmented in EEG epochs of 10 sec-
onds in order to apply the subsequent features extraction methods on each epoch.
Moreover, the segmentation of the signal in epochs is helpful as it allows a more
accurate analysis of the variations of the EEG signal at the local level. However,
the EEG signal is strongly stationary. Therefore, to apply the subsequent spec-
tral analysis, it is necessary to segment it into epochs rather than analyze it for
its entire duration. This operation also extends the dataset without resorting to
artificial methods, improving the classification process.
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Fig. 3. An example of filtered EEG signals acquired from some electrodes positioned
on the frontal and central lobes (the time of acquisition is indicated on the x-axis; the
amplitude values in mV are reported on the y-axis).

2.2 EEG Features Extraction

After the pre-processing step, the next stage in the EEG software pipeline is the
features extraction stage. As stated before, features extraction seeks to extract
relevant information retained in the signals.

We decided to implement the Power Spectral Density (PSD) analysis because
it is a robust extractor largely used for EEG quantitative analysis. Specifically,
among the several methods for PSD estimation reported in the literature, we
have chosen Welch’s method. It is a well-known non-parametric method for PSD
computation. Let z[n], n =0,, N — 1 be the samples from an EEG epoch. The
evaluation of PSD by using Welch’s method consists of the following steps:

— the original EEG epoch is divided into N sections (possibly overlapped O)
of equal lengths M;

z|n| =z[n+i0] i=0,...K—1, andn=0,...N—1 (1)

— a window is applied to each section, and then the periodogram on the win-
dowed sections is calculated. The periodogram is defined as:

N-1

(2)

n=0

— the periodograms are averaged from the K sections in order to obtain an
estimator of the spectral density

| K-l
Pyx(f):?ZPi(f) (3)
=0
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Where P,, estimates the cross power spectral density of two discrete-time

signals, = and y, the Welch method eliminates the tradeoff between spectral
resolution and variance by allowing the segments to overlap. If a high-frequency
resolution is needed, the record could split into a small number N of segments
of length L. Our analysis uses a segment with a 50% overlap for the first step
and the Hamming window in the second step.

In this paper, we extracted power spectral density (PSD) of classical fre-

quency bands from around 1 Hz to 70 Hz. Specifically, delta (1-4 Hz), theta
(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), gamma (30-70 Hz) bands have been
considered.

Fig. 4. EEG signals power in the beta band evaluated for all epochs.

The main processing steps of our feature extraction approach can be sum-

marized as:

Power Spectral Density (PSD) was estimated through Welch method;

from PSD matrix output, we evaluated cumulative power for all EEG fre-
quencies;

from PSD matrix output, we selected five frequency sub-bands;

for each band (delta, teta, alpha, beta, gamma) we computed cumulative
power.

Figure 4 shows an example of cumulative power in beta band for all epochs

extracted from an EEG signal.

All features extracted (six power cumulative coefficients for all epochs for all

EEGS) are arranged into the features vector.
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2.3 EEG classification

Several supervised Machine Learning algorithms and ensemble techniques have
been tested to discriminate CNT (control) EEG (healthy) from PNES EEG and
epileptic EEG: LDA, Decision Trees, Random Forest and Gradient Boosting.

LDA classifier finds an optimal linear transformation that maximizes the
class separability. LDA generates a linear combination of data sets that permits
the largest mean differences between the desired classes. It works well when
the feature vector is multivariate normally distributed in each class group, and
different groups have a common covariance.

In decision trees algorithm [9] knowledge is gained through a set of rules,
structured in a tree form. Random forest [4] is a bagging ensemble of decision
trees while in Light Gradient Boosted Machine (LGBM) [8] a boosting ensemble
of decision trees is built by minimizing a differentiable loss function through
gradient descent optimization algorithm. Evaluation was performed through a
70%/30% Random Train Test Split.

3 Results

In this study, we analyzed EEG recordings from 75 patients with PNES, 75
healthy patients referred to as CNT (controls) and 75 epileptic patients. EEG
acquisitions were performed from the Operative Unit of Neurology, Mater Do-
mini Polyclinic, University of Catanzaro, Italy. PNES patients were diagnosed
according to a video-EEG registration of a typical episode, with EEG showing
neither concomitant ictal activity nor post-ictal. None of the subjects was on
chronic medication or had received any drug up to 24 hours. The study was con-
ducted following the Declaration of Helsinki and formally approved by the local
Medical Research Ethics Committee. Participants were comfortably seated in a
semi-darkened room and with open eyes. EEG recordings were acquired using
19 Ag/AgCl surface electrodes positioned according to the International 10/20
System (see Figure 5). Recordings were performed with an Xltek Brain Monitor
EEG Amplifier with a sampling rate of 256 Hz, a high-pass filter at 0.5 Hz, a
low-pass filter at 70 Hz, and a 50 Hz notch filter.

All the electrode-skin impedance has been kept below 5 Kf2. The EEG data
were recorded in a resting condition. The average EEG acquisition duration is
between 10 and 20 minutes. The signals have been segmented in epochs lasting
10 seconds. So an average number of 105 epochs has been obtained for each
channel for each subject.

Then for each EEG epoch, the six cumulative power coefficients (introduced
in section 2) were evaluated. The features vector has the following dimension:
the number of cumulative power coefficients (6) times the number of epochs (an
average of 105 epochs for each EEG) times the number of channels (19) times
the number of subjects (225).

The training and testing of the different machine learning models described
in section 2 was conducted through the python PyCaret library (available online
at https://pycaret.org.)
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Fig. 5. EEG electrodes montage according to the 10/20 International Standard.

For the evaluation of the multiclass predictive models, several comparative
metrics were chosen, including accuracy and AUC (The Area Under the Curve)
with a One vs Rest (OvR) strategy [2].

Accuracy represents the proportion of instances correctly predicted by the
algorithm. For example, in the case of multiclass classification with OvR strat-
egy, we indicated with TCNT, TEPI and TPNES, the number of CNT, EPI
and PNES subjects that the model correctly predicts, and FCNT, FEPI and
FPNES, the number of CNT, EPI and PNES subjects misclassified by the
model. Therefore, we can define the accuracy as:

TCNT+TEPI+TPNES
TCNT +TEPI+TPNES+ FCNT + FEPI + FPNES

Accuracy =

AUC is one of the evaluation criteria of the ability of a classifier to distinguish
between classes. It is used as a summary of the Receiver Operating Characteristic
(ROC) curve. The ROC curve reveals the discrimination capability by plotting
the True Positive Rate against the False Positive Rate in threshold values. The
area under the ROC curve (AUC) provides an aggregate measure of ROC per-
formance. In an OvR strategy, the ROC curve was considered separately for each
class (see Figure 6, where we plotted ROC curves for the LGBM classifier and
each class). Micro and macro-average ROC curves were also considered as global
measures.
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Fig. 6. ROC Curves for LGBM Classifier.

In Table 1 Accuracy and micro-average Area Under the Curve (AUC) of the
classifier models are compared. Best values are highlighted in bold. The results
show that LGBM reached the best performance.

Table 1. Accuracy and AUC of the considered models.

Model Accuracy|AUC

Light Gradient Boosting Machine| 0.86 |0.98
Random Forest 0.85 [0.95
Decision Tree 0.74 0.81

Linear Discriminant Analysis 0.45 0.65

The good performances of the LGBM model are also confirmed by the pre-
cision and recall curve, reported in Figure 7. It shows a good tradeoff between
false positive and false negative rates.

Further insights regarding the most discriminative features and the separa-
bility of each of the classes are shown for the most performing model, i.e. LGBM.
In particular, by combining the results reported in the confusion matrix w.r.t.
the test set (Table 2), the OvR ROC curves and the micro and macro average
ROC curves in Figure 6, and the percentage of errors committed by class, as
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Precision-Recall Curve for LGEMClassifier
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Fig. 7. Precision-Recall curve.

shown in Figure 8, it is possible to conclude that the EPI class was the one
best discriminated by the model, with a 99% AUC and an error rate of 3%. In
comparison, 10% of PNES subjects were erroneously classified as CNT, and 13%
of CNT subjects were erroneously classified as PNES by the LGBM model.1

According to the results shown in Figure 9, the most significant features
of the LGBM classifier are the cumulative power in the theta band in the Pz
electrode and the gamma band.

4 Conclusions

In the neurological field, the diagnosis of PNES seizures requires considerable
effort and time, as PNES patients show the same symptoms as people with
epilepsy. Generally, PNES patients are diagnosed as epileptic and pharmaco-
logically treated for several years before the correct diagnosis is made, with
significant consequences for the patient. Therefore, we are trying to define new
methodologies to support clinical diagnosis to reach an accurate diagnosis of
PNES quickly. This work proposes a method for analyzing the EEG acquired in
resting conditions with combined signal processing and machine learning tech-
niques. Our analysis pipeline was tested on a massive dataset of approximately
225 subjects and produced classification accuracy results between control sub-
jects, PNES and epileptics greater than 85%.
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Fig. 9. The ten most important features w.r.t. LGBM.
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Table 2. LGBM Confusion Matrix.

Predicted Class

CNT EPI PNES
CNT 1832 193 297
Ground
truth
EPI 149 2168 19
PNES 256 35 2099

The results also show that the best model well discriminates EPI subjects
among CNT and PNES, while 10% of PNES subjects were erroneously classified
as CNT and 13% of CNT subjects as PNES.

The results show that the most significant features of the best performing
model are the cumulative power in the theta band in the Pz electrode and the
gamma band.

Further efforts will be made in future work to assess the impact of feature
engineering on predictive performance by also considering Deep Learning algo-
rithms.
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