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Abstract. The increasing volume and variety of science data has led to
the creation of metadata extraction systems that automatically derive
and synthesize relevant information from files. A critical component of
metadata extraction systems is a mechanism for mapping extractors—
lightweight tools to mine information from a particular file types—to
each file in a repository. However, existing methods do little to address
the heterogeneity and scale of science data, thereby leaving valuable data
unextracted or wasting significant compute resources applying incorrect
extractors to data. We construct an extractor scheduler that leverages file
type identification (FTI) methods. We show that by training lightweight
multi-label, multi-class statistical models on byte samples from files, we
can correctly map 35% more extractors to files than by using libmagic.
Further, we introduce a metadata quality toolkit to automatically assess
the utility of extracted metadata.

Keywords: Metadata Quality · Extraction · File Type Identification

1 Introduction

The many files accumulated within science and engineering organizations may,
both individually and collectively, contain data of great value. However, poor
organization and inadequate documentation frequently make these files difficult
for users to navigate. In order to promote repository navigability, metadata ex-
traction systems [18, 12, 11, 5, 23] have been developed to automatically populate
rich, searchable data catalogs. Metadata extraction systems generally follow a
common structure, as illustrated in Figure 1, in which the following steps are
performed in order: (A) iterate over all files in a repository; (B) identify the
type(s) of each file (e.g., free text, tabular, image); (C) invoke one or more ex-
tractors (sometimes called parsers) on each file to obtain metadata; and (D)
perform an action with the resulting metadata (e.g., load a search index). How-
ever, different metadata extraction systems focus on different use cases, data
types, and communities, and therefore apply different approaches for each stage.
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2 T. Skluzacek et al.

Fig. 1:Automated metadata extraction steps: (A) find all files in repository,
(B) infer each file’s type such that it can be mapped to applicable extractors,
(C) execute one or more extractors, (D) post-process metadata.

In our work we focus on extracting metadata from scientific data, an impor-
tant step for making these complex data navigable and increasing data utility.
While much prior research has focused on metadata extraction from personal
and enterprise file collections, there is relatively little focus on scientific data,
and in particular on the unique challenges posed by these data. For example,
the broad nature of scientific inquiry leads scientists to store data in esoteric
formats, without regard for schema or file extension; data are often encoded in
multi-dimensional file formats that integrate various data types into single files,
or spanning several files; and the rise of IoT and decentralized storage has led
to data repositories being spread across disparate compute resources.

The growing volume and velocity of scientific data leads us to closely consider
the resources used when extracting metadata. Naively applying all extractors
to each file is not only inefficient, but may also lead to incorrect or irrelevant
metadata. In Figure 2, we illustrate execution times when exhaustively invoking
a library of eight extractors on every file in the 428 000-file Carbon Dioxide
Information Analysis Center (CDIAC) data set [2]. The figure shows that while
most extractors fail quickly, significant compute time is wasted; we estimate
that successful invocations consume 130 core hours, whereas applying incorrect
extractors (e.g., a NetCDF extractor on a Python script) consumes 670 core
hours while returning no valid metadata. When mapping files to extractors, even
the most advanced extraction systems do little more than map a mimeType,
extension, or byte-regex to a single extractor. However, when scientists create
data in bespoke formats or store diverse data types within a single file, these
modes of mapping extractors to files often fail.

In this paper, we present an intelligent extractor scheduler for the Xtract
metadata extraction system [18] that bridges many of the challenges in applying
extractors to science data. While our prior work has focused on issues of scale
and decentralization [18], we focus here on directly addressing file diversity by
leveraging prior research in file type identification (FTI). We construct statistical
learning models that, when used as part of our scheduler, can prioritize the
application of extractors to collections of files; thereby maximizing the metadata
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Fig. 2: Box plots (and point distributions) for the invocation of each extractor
to each file in CDIAC. The green plots are file-extractor invocations that suc-
cessfully yield metadata; red are failed invocations (i.e., wasted core hours).

information obtained. Further, we evaluate the efficacy of these methods via a
set of automatically derived metadata quality metrics. The contributions of our
work are:

– Parameterization and evaluation of FTI methods for metadata extraction.
– Comparative evaluation that shows that our models outperform a state-of-

the-art tool (libmagic [1]) in mapping extractors to files by 35%.
– Application of FTI methods on two large, uniquely-diverse scientific data

repositories: the heterogeneous Carbon Dioxide Information Analysis Center
(CDIAC) and the homogeneous COVID-19 Open Research Dataset (CORD) [24].

– An automated metadata quality analysis toolkit capable of evaluating ex-
tracted metadata.

The remainder of this paper is as follows. §2 presents related work in ex-
traction systems and FTI. §3 outlines automated metadata quality metrics. §4
presents our algorithms, learning models, and quality metrics to be evaluated.
§5 contains the evaluation of our work on two uniquely diverse scientific data
repositories. Finally, §6 summarizes our contributions.

2 Related Work

In this section, we review related work in metadata extraction systems and FTI.
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2.1 Metadata Extraction Systems

When evaluating the breadth of open-source metadata extraction systems (as
illustrated in Table 1), we observe recurring research gaps: most systems do not
cater to the scale and decentralized nature of modern scientific data; none con-
sider the quality of returned metadata; and most have rigid schema constraints
(i.e., only process a handful of file types) or manually map file mimeTypes for
extractors, and therefore cannot support files of multiple types (e.g., a tabu-
lar CSV file with a free text header). To the best of our knowledge, no prior
system prioritizes extractors based on the expected value of metadata. While
this work strictly focuses on designing an FTI-based extractor scheduler for our
system Xtract, prior work illuminates the system design [18, 3] and extractor
library [19].

Table 1: Taxonomy of metadata extraction systems. We illustrate differences
in systems’ mechanisms for scaling extractions (Parallel), whether they re-
quire the transfer of data from the edge to a centralized compute resource
(Centralized), their strategy for mapping extractors to files (Mapping), whether
they provide quality metrics for automatically extracted metadata (Quality),
and the supported science domains (Domains).

System Parallel Central Mapping Quality Domain

Tika [12] Threads No extension,
mimeType,
byte-matches

None general

Clowder [11] Cloud Yes mimeType None general
BDQC [5] None Yes input schema None biomedicine

Constellation [23] Cloud Yes input schema None general
ScienceSearch [16] Cluster Yes input schema None microscopy

Xtract Cluster,
Cloud

No FTI Yes general

2.2 File Type Identification

File type identification (FTI) aims to automatically classify files from inscribed
physical contents and is commonly used in digital forensics [15] and malware de-
tection [21]. FTI methods traditionally rely on easily-attainable features from the
file (bytes, extension, size). However, science data creates unique challenges as
file creators do not adhere to common file extensions, mimeTypes, or schema [20].

FTI methods are crucial to metadata extraction for two reasons: (1) only
extractors yielding metadata should be executed on a file, and (2) the multi-
output nature of statistical learning algorithms corresponds well with multi-
typed files. We consider significant prior work in evaluating and selecting features
and models that may work well for the extractor mapping problem [6, 9, 13]. We

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_30

https://dx.doi.org/10.1007/978-3-031-08751-6_30


Models and Metrics for Mining Meaningful Metadata 5

evaluate the performance of our own file type identification methods with metrics
from prior FTI work (i.e., train time, precision, recall, F1) and metadata quality
metrics, as outlined in the following section.

3 Metadata Quality Determination

Ultimately, the goal of metadata extraction systems is to derive useful metadata;
however, current extraction systems do not consider the utility of extracted
metadata for either individual files or entire data collections. Metadata quality
metrics are thus necessary to illuminate the value of applying a given extractor
to a file, and by extension, enables us to evaluate the efficacy of FTI methods
and extraction systems. While there is some prior work in metadata quality
metrics [8], we specifically seek out metrics to automatically quantify the utility
of a metadata corpus. We identify the following metrics that measure various
dimensions of utility: yield, completeness, entropy, and readability.

Yield. Metadata yield is the total amount of metadata, measured as the num-
ber of bytes of metadata produced. While an imperfect measure, yield is useful
for understanding the context of the other metrics, and is easy to obtain. For
instance, how do 5 “readable” bytes compare to 1000 that are less readable?

Completeness. Metadata are complete if they contain all possible attributes
that could be obtained. In practice, and especially in the presence of diverse
schema, some metadata attributes may be left empty. The simplest complete-
ness metric [14] simply divides the number of metadata elements by the total
number of elements that could be obtained (i.e., a percentage). We call this met-
ric simple completeness and define it in Equation (1), where N is the number of
attributes and P (i) is 0 if the ith metadata attribute is null, and 1 otherwise:

simple completeness =

N∑
i=1

P (i)

N
∗ 100 (1)

Other researchers [7] have created weighted versions of completeness to ac-
count for some attributes exhibiting higher semantic importance than others.
They enable multi-tiered importance by including in their completeness score
an “absence” penalty for missing metadata elements, where a higher weight
corresponds to subjectively more-relevant attributes. Even further, others have
accounted for the weighted importance of values in hierarchical attributes [10].
While the aforementioned measures of completeness arguably better represent a
human’s subjective view of “completeness”, it is difficult to have humans man-
ually provide weights, primarily due to the propensity of users to bias higher
weights onto items they personally correlate to value [4]. While we plan to prop-
erly address (and de-bias) weighting strategies via user study in future work, we
use simple completeness as a sufficient and fair proxy-measure in this paper.

Entropy. Metadata entropy [17] is the degree to which metadata presents infor-
mation that is different from other metadata. A common approach is to apply
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Term Frequency-Inverse Document Frequency (TF-IDF) to determine the en-
tropy of a metadata document. TF-IDF for a metadata document provides an
importance score for all words in a document, relative to all metadata docu-
ments in the corpus. Scientists [14] have proposed a score built on TF-IDF that
produces an entropy score for a metadata document as is shown in Equation (2),
where N is the number of text attributes, attributei the ith attribute of meta-
data, and sum tf(attributei) the sum of TF-IDF scores for a given attribute (in
a document):

entropy = log(

N∑
i=1

sum tf(attribute i)) (2)

Readability Readability measures the ability of humans to semantically inter-
pret metadata. In this work, we leverage the Flesch Index [22]—a document
score that compounds the complexity of words and sentences onto a 0–100 scale
where documents scoring near 0 are unintelligible to most human readers and
those scoring near 100 are broadly understood. For metadata documents in a
search index, we ideally give higher semantic weight to metadata containing
searchable words, thereby penalizing number-dominated metadata. To accom-
plish this, we weight the Flesch index by the proportion of characters (n char)
that are not numbers (n num): Ws = (1− n num

n char ). To account for decimal points
potentially misrepresenting the ends of sentences in numeric metadata, we re-
move all mid-numeric decimal points prior to tokenizing. We then define our
weighted Flesch index WFlesch, where n word, n sent, n syl are the number of
words, sentences, and syllables, as follows:

WFlesch = (

original Flesch Index︷ ︸︸ ︷
206.835− 1.015(

n word

n sent
)− 84.6(

n syl

n word
)) ∗Ws (3)

4 Methodology

We now describe our process for using statistical learning models to identify
applicable extractors for each file in a science repository. Specifically, we describe
how we label data, generate features, select models, and leverage model outputs
as input to the extraction scheduler.

Label Generation. We first create a library of ground-truth labels for all files
in both science repositories. To this end, we exhaustively apply each extractor
to every file, and record (1) the metadata returned by the extractor, and (2) the
time taken to execute the extractor. The file is assigned a label for each extractor
that, when applied to it, returns nonempty metadata. If a file receives no labels,
we use heuristic methods to determine whether a file might be compressed, a
binary executable, or empty—and if none of those—it receives a label of “un-
known.” For supervised model training, we place each possible type label for a
given file f ∈ F into a label vector L(f) = [is(f, t0), is(f, t1)...is(f, tm)] where
is(f, ti) is 1 if f is of type t ∈ T , and 0 if not.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_30

https://dx.doi.org/10.1007/978-3-031-08751-6_30


Models and Metrics for Mining Meaningful Metadata 7

Fig. 3: Feature illustration for head, rand, and randhead.

Feature selection. We create input feature vectors containing (i) file size and
(ii) 16–512 byte samples from the file. As illustrated in Figure 3, we fetch byte
samples from the following locations in the file: the header (head), randomly
throughout (rand), or a combination of both (randhead).

Model selection. We train models to accomplish the following: given a file
f ∈ F , we want to train a model m ∈ M such that m(f) generates a probability
distribution P (f) = [p(f, e1), p(f, e2), ..., p(f, en)], where p(f, e) is the proba-
bility that f should map to extractor e ∈ E. We explore multiple statistical
learning models: logistic regression (logit), random forests (rf), and support vec-
tor classification (svc). We evaluate model performance primarily in the form of
F1 score (which measures overall model performance) and recall (the percentage
of correct file-extractor mappings identified) on weighted multi-class probability
distributions generated by each model. We also consider model training time.
To account for potential overfitting, we evaluate models on both imbalanced (all
data) and balanced (subset of the data) classes.

Extraction Scheduler. Our primary goal is to design an extraction system that
converts FTI model outputs into a schedule of file/extractor pairs to execute.
We first train lightweight regressions that use a file’s size to predict metadata
yield Y (e, size(f)) and extraction time T (e, size(f)). We select our regression
based on which has the better correlation score between a linear and nonlin-
ear model [25], and fit the corresponding model. Given our probability vector
of file-extractor mappings, P (f) = [p(f, e1), p(f, e2), ..., p(f, en)], the size of a
file size(f), and a +1 Laplace smoothing constant, we introduce an objective
function to compute predicted metadata yield over time α(f, e):

α(f, e) = log(
Y (e, size(f)) ∗ p(f, e) + 1

T (e, size(f)) + 1
) (4)

We prioritize extractor execution by loading a priority queue in descending order
of alpha score (i.e., the system maximizes expected metadata yield over time).

5 Evaluation

We analyze the feature and model performance of the FTI methods and compare
with libmagic [1]. We then examine metadata quality when using our scheduler.
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Science repositories. We evaluate our approach in the context of two distinct
scientific repositories. We primarily focus on the Carbon Dioxide Information
Analysis Center (CDIAC) a climate science dataset that represents a multi-
group conglomeration of carbon dioxide data. We copied these data from their
now-defunct FTP server in 2017. These data, whose extensions we visualize as a
treemap in Figure 4, have a high degree of variety—there are over 150 unique file
extensions spanning 428 000 files, and many of the files are in difficult-to-parse
formats (e.g., deprecated Windows installers, Hadoop error logs, and desktop
shortcuts) [20]. We include both the unedited file formats consisting of many
compressed files (e.g., .Z ), and also the decompressed contents. We also examine
the more-homogeneous COVID-19 Open Research Dataset (CORD) containing
517 000 JSON-formatted COVID-19 research papers spanning 2019–2021.

Fig. 4: Treemaps of CDIAC: (left) the unedited repository, (right) all decom-
pressed files. Each box’s area is the proportion of files of that extension, and
darkness is the relative total size (darker=bigger). The orange box on the right
represents files with no extension.

Experimental Testbed. We perform our experiments on ALCF Theta, an
11.7-petaflop Cray XC40 supercomputer with second-generation Intel Xeon Phi
“Knight’s Landing” (KNL) processors. Each node has a 64-core processor and
166 GB MCDRAM, 192 GB DDR4 RAM, with a shared a Lustre file system.

5.1 FTI Modeling

Features. We first want to find the best byte structure (head, rand, randhead)
and number of bytes (16–512) to use as features in our analysis. For all experi-
ments, we use a standard 70%/30% train/test split. Figure 5 shows the range of
model scores for the different byte structures on each of the three model types:
logit, rf, and svc. We see that, for the CDIAC data, the head bytes outperform
rand and randhead in every statistical metric. To investigate whether there is
significant benefit beyond 512 head bytes, we compare F1 improvements when
doubling from 16 to 32, and 256 to 512, respectively. The relative F1 difference
when increasing from 16 to 32 bytes for (logit, rf, svc) is (+1.0, +0.6, +0.7),
but the difference between 256 and 512 bytes is only (+0.2,+0.1,-1.9). There-
fore, we use 512 head bytes, since additional bytes would likely have marginal
benefit. As shown in Table 2, CORD can be processed well by any of the feature
configurations.
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Fig. 5: Model scores for multiple 512-byte feature configurations (CDIAC).

Table 2: Model performance for 16 and 512 bytes for logistic regression (logit),
random forests (rf), and support vector classifier (svc) on CDIAC and CORD

Repository
Header
Bytes

Model
Train

Time (s)
Precision Recall F1 Score

CDIAC

logit 403 0.839 0.836 0.837
16 rf 2.29 0.890 0.896 0.893

svc 1010 0.856 0.867 0.861
logit 1140 0.930 0.936 0.933

512 rf 4.50 0.939 0.938 0.938
svc 9240 0.875 0.885 0.880

CORD

logit 17.0 1.00 1.00 1.00
16 rf 3.56 1.00 1.00 1.00

svc 418 1.00 1.00 1.00
logit 183 1.00 1.00 1.00

512 rf 4.25 1.00 1.00 1.00
svc 464 1.00 1.00 1.00

Models. To avoid overfitting, we train our models on both imbalanced and
balanced classes in CDIAC. The imbalanced class (all-of-CDIAC) experiments
shown in Figure 6 shows that the 512B random forests model can adequately
identify most file types in the CDIAC repository. The confusion matrix shows
that the model can effectively identify the top hierarchical type for a file, and the
multiclass-weighted PR curve shows that, overall, we see high recall, regardless
of precision, for each label type. Interestingly, one can see in both diagrams that
the most-difficult class for the model to identify is the “unknown” class.

As the imbalanced model is likely overfit to the larger classes, we propose
an experiment on balanced classes; we create a balanced subset of CDIAC by
randomly selecting 200 files from each class (and omitting those classes with
fewer than 200 files). In Figure 7, the confusion matrix shows that our model
can efficiently select the top type of a file, whereas the multiclass-weighted PR
curve shows that we see fairly high precision at all levels of recall. Interestingly
in the balanced case, we see that the model has added difficulty in selecting
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(a) Confusion Matrix (n=214 315) (b) Precision-Recall Curve (Area
Under Curve)

Fig. 6: Imbalanced Classes (CDIAC): confusion matrix (prediction-
normalized) and precision-recall curve (multi-class weighted) for random forests
model trained on 512 head bytes.

(a) Confusion Matrix (n=1800) (b) Precision-Recall Curve

Fig. 7: Balanced Classes (CDIAC): confusion matrix (prediction-normalized)
and precision-recall curve (multi-class weighted) for random forests model
trained on 512 head bytes.

.

tabular files, likely explained by the high overlap of files correctly mapping to
multiple extractors.

Finally, to study how the model performs when individual files contain mul-
tiple content types, we analyze the output probability distributions for all multi-
typed files, and investigate whether each type is represented at the top of the
probability distribution. In Table 3, we observe that, for CDIAC, most multi-
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typed files share a type with the keyword extractor, and the model identifies the
keyword type 80% of the time and the other type 96% of the time.

Table 3: Analysis of files of both types Type 1 and Type 2, and how many of
each type are included in the top-2 entries of the probability distribution.

Repository Type 1 Type 2 Count Type 1 Included Type 2 Included

CDIAC
keyword

tabular 12 878 10 966 12 415
jsonxml 3282 1954 3109
netcdf 252 205 252
c-code 8 8 3
python 3 3 3

tabular python 7 7 7

CORD jsonxml keyword 517 900 517 900 517 900

(a) Confusion Matrix

Type Pr. Re. F1

empty 1.00 1.00 1.00
executable 0.00 0.00 0.00
compressed 0.98 1.00 0.99
tabular 0.25 0.06 0.10
images 0.96 0.96 0.96
keyword 0.44 0.91 0.59
netcdf 1.00 0.97 0.98
jsonxml 0.96 0.65 0.78
unknown 0.84 0.13 0.23
unkn.-mac 0.00 0.00 0.00

(b) Precision, Recall, F1

Fig. 8: Libmagic (CDIAC): confusion matrix and performance metrics for
mapping extractors to files using the libmagic FTI tool.

Libmagic Comparison. We next compare our approach to the libmagic FTI
tool. As libmagic types do not directly map to our extractor library, we man-
ually map libmagic outputs to our types. Some mappings are obvious (e.g.,
empty:empty, compress’d:compressed) while others required consulting libmagic
documentation (e.g., data:unknown). We compare each libmagic output to our
extractor labels, and show the result in Figure 8. Overall, libmagic performs
significantly worse than our FTI methods, as it consistently misclassifies tabular
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and keyword data. Even in this favorable experiment, libmagic only accurately
identifies 65% of files (cf. our FTI methods correctly identify 88%).

5.2 Extractor Scheduler and Metadata Analysis

We next evaluate the extraction patterns and metadata output over time when
the scheduler uses the predicted probability vectors for each file. Figure 9a shows
the extractor executions over all possible file-extractor pairs. Given that the
scheduler prioritizes metadata yield over time, we notice that extractors that
either succeed quickly (jsonxml, images) or those that produce large quantities
of metadata (tabular) have initial spikes within the first 10% of invocations.

(a) Extractor invocations over time (b) Relevant files found over time

Fig. 9: Scheduler Analysis: (a) extractor invocations over percentage of file-
extractor pairs processed; (b) percentage of total quality files discovered over all
file-extractor pairs processed.

To measure the relative utility of metadata extraction, we count “useful”
metadata documents as defined by the quality metrics: semantic metadata are
those that contain searchable words (measured as files with nonzero readability
scores), near-full metadata contain complete data (measured as files with over
50% completeness), high entropy metadata add unique information to the cor-
pus (measured as files with nonzero entropy), and high yield metadata exceed
500 bytes. Figure 9b shows that maximizing yield over time naturally priori-
tizes extracting semantically searchable and high entropy metadata. Intuitively
this makes sense as semantic metadata are often larger than average (containing
many words), and therefore provide high yield. Therefore, we see that this sched-
uler could add significant value for organizations looking to create a semantically
searchable index with high information content on a limited compute budget.

For purposes of illustrating potential quality bias across extractors, we il-
lustrate in Figure 10 the observed metrics of all CDIAC metadata. We observe
that different extractors generate unique quality profiles: tabular metadata ex-
hibit high readability and entropy, keyword metadata exhibit high readability,
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and hdf and image metadata exhibit high completeness. In future work, we will
study how extractor quality profiles can be used in an extraction scheduler.

Fig. 10: Spider plot representation of
successful metadata extraction metrics
on CDIAC. The distance between the
center and each extractor is the log-scale
range of each metric, and the placement
of the colored line represents the median
of the corresponding metric.

6 Conclusion

Accurate and performant metadata extraction is dependent on accurate methods
for mapping extractors to files; however, traditional methods are not conducive
to the wide, heterogeneous variety of science file formats. We introduce sev-
eral file type identification methods that use lightweight byte-features from files
and various machine learning models to predict scientific file types. We use these
models to create a scheduler for the Xtract metadata extraction system, enabling
Xtract to prioritize application of extractors to files. Further, we introduce sev-
eral metrics designed to quantify the utility of metadata, and by extension, the
usefulness of the extractor scheduler.
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