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Abstract. Anomaly detection for time series data is often aimed at
identifying extreme behaviors within an individual time series. However,
identifying extreme trends relative to a collection of other time series
is of significant interest, like in the fields of public health policy, social
justice and pandemic propagation. We propose an algorithm that can
scale to large collections of time series data using the concepts from
the theory of large deviations. Exploiting the ability of the algorithm
to scale to high-dimensional data, we propose an online anomaly detec-
tion method to identify anomalies in a collection of multivariate time
series. We demonstrate the applicability of the proposed Large Devia-
tions Anomaly Detection (LAD) algorithm in identifying counties in the
United States with anomalous trends in terms of COVID-19 related cases
and deaths. Several of the identified anomalous counties correlate with
counties with documented poor response to the COVID pandemic.

Keywords: Large deviations, Anomaly detection, High-dimensional data, Mul-
tivariate time series, Time series database

1 Introduction
Anomaly detection has been extensively studied over many decades across many
domains [5] but remains difficult for comparisons across time series. This prob-
lem is critical to study policy responses in pandemic propagation, economics,
social justice, climate change adaptation to name a few e.g. studying anoma-
lous COVID-19 infection data trends across various countries, states or counties
could identify successful public policies. Usual approaches to monitoring individ-
ual time series [16] and identifying sudden outbreaks or significant causal events
cannot be used to detect gradual divergence or drift. In this paper, we propose a
new anomaly detection algorithm Large deviations Anomaly Detection (LAD),
for large/high-dimensional data and multivariate time series data. LAD uses the
rate function from large deviations theory (LDT) [24] to deduce anomaly scores
for identifying anomalies. Core ideas for the algorithm are inspired from an LDT
projection theorem that allows better handling of high dimensional data. Unlike
most high dimensional anomaly detection models, LAD does not use feature se-
lection or dimensionality reduction, which makes it ideal to study multiple time
series in an online mode. LAD model naturally segregates the anomalies at each
time step while enabling comparison of multiple multivariate time series. Key
advances of the novel LAD algorithm reported here are:
3 An introductory pre-print version available as Guggilam et al. [11].
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1. Large deviations Anomaly Detection (LAD) algorithm is a scalable LDP
based method, for scoring based anomaly detection.

2. LAD model can analyze large and high dimensional datasets without addi-
tional dimensionality reduction increasing accuracy and reducing cost.

3. Online extension of LAD can detect anomalies across many multivariate time
series using an evolving anomaly score for each tracking developing behavior.

4. An empirical study of publicly available anomaly detection benchmark datasets
to analyze robustness and performance on high dimensional and large datasets.

5. A detailed analysis of COVID-19 trends for US counties where we identify
counties with anomalous behavior (See Figure 1 for an illustration).

(a) Total Confirmed Cases (b) Total Deaths

Fig. 1: Top 5 anomalous counties in in USA identified by the LAD algorithm based on
time-series data consisting of cumulative COVID-19 per-capita infections and deaths.
The time-series for the non-anomalous counties are plotted (light-gray) in the back-
ground for reference. For the counties in New York, significant rise during early 2021 in
confirmed cases (left) and high death rates, is detected. Washington and Linn County
in Oregon are anomalous primarily due to steady low rates of infection.

2 Related Work
A large body of research exists on studying anomalies in high dimensional data
[3]. Many anomaly detection algorithms use dimensionality reduction techniques
as a pre-processing step to anomaly detection. However, many high dimensional
anomalies can only be detected in high dimensional problem settings and dimen-
sionality reduction in such settings can lead to false negatives. Many methods
exist that identify anomalies on high-dimensional data without dimensional re-
duction or feature selection, e.g. by using distance metrics. Elliptic Envelope
(EE) [21] fits an ellipse around data centers by fitting a robust covariance es-
timates. Isolation Forest (I-Forest) [15] uses recursive partitioning by random
feature selection and isolating outlier observations. k nearest neighbor outlier
detection (kNN) [18] uses distance from nearest neighbor to get anomaly scores.
local outlier factor (LOF) [4] uses deviation in local densities with respect to its
neighbors to detect anomalies. k-means-- [7] method uses distance from nearest
cluster centers to jointly perform clustering and anomaly detection. Concen-
tration Free Outlier Factor (CFOF) [2] uses a “reverse nearest neighbor-based
score” which measures the number of nearest neighbors required for a point to
have a set proportion of data within its envelope. In particular, methods like
I-Forest and CFOF are targeted towards anomaly detection in high dimensional
datasets. However, they are not tailored for evolving data.

Many score based anomaly detection algorithms have been designed to clas-
sify anomalies within individual time series. For instance, Twitter Ad Vec [14]
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are unsupervised study deviations from the data. Numenta[1] uses prediction
errors to classify anomalies. Relative Entropy [25] compares entropy to identify
anomalous observations. However, these algorithms are limited to studying only
individual time series and not easily extended to an entire database of time se-
ries. Recently, large deviations theory has been widely applied in the fields of
climate models [8], statistical mechanics [23], among others. Specially for analysis
of time series, the theory of large deviations has proven to be of great interest
over recent decades [17]. However, these methods are data specific, and often
study individual time series. In most settings, real time detection of anomalies
is needed to dispatch necessary preventive measures for damage control. Such
problem formulation requires collectively monitoring a high dimensional time
series database to identify anomalies in real time. While, the task of detect-
ing anomalous time series in a collection of time series has been studied in the
past [13], most of these works have focused on univariate time series and have
not shown to scale to long time series data or provide limited explanation on
why the identified trends are anomalous. Our proposed method addresses this.

3 Large Deviation Principle
Large deviations theory provides techniques to derive the probability of rare
events4 that have an asymptotically exact exponential approximation[9, 24]. The
key concept of this theory is the Large Deviations Principle (LDP). The principle
describes the exponential decay of the probabilities for the mean of random
variables. To implement LDP on data with known distributions, it is important
to decipher the rate function I. Cramer’s Theorem provides the relation between
I and the logarithmic moment generating function Λ5.

Theorem 1 (Cramer’s Theorem). Let X1, X2, . . . Xn be a sequence of iid
real random variables with finite logarithmic moment generating function, e.g.
Λ(t) < ∞ for all t ∈ R. Then the law for the empirical average satisfies the
large deviations principle with rate ϵ = 1/n and rate function given by I(x) :=
supt∈R (tx− Λ(t)) ∀t ∈ R.
Thus, we get, limn→∞

1
n log (P (

∑n
i=1 Xi ≥ nx)) = −I(x), ∀x > E[X1]. For

more complex distributions, identifying the rate function using logarithmic mo-
ment generating function can be challenging. Many methods like contraction
principle and exponential tilting exist that extend rate functions from one topo-
logical space that satisfies LDP to the topological spaces of interest[9]. For our
work, we are interested in the Dawson-Gärtner Projective LDP, that generates
the rate function using nested family of projections.

Theorem 2. Dawson-Gärtner Projective LDP: Let {πN}N∈N be a nested fam-
ily of projections acting on X s.t. ∪N∈Nπ

N is the identity. Let XN = πNX
and µN

ϵ = µ0 ◦ (πN )−1, N ∈ N. If ∀N ∈ N , the family {µN
ϵ }ϵ>0 satisfies

the LDP on XN with rate function IN , then {µϵ}ϵ>0 satisfies the LDP with
rate function I given by, I(x) = supN∈NIN (πNx) x ∈ X .Since IN (y) =

4 In our context, these rare events include outlier/anomalous behaviors.
5 The logarithmic moment generating function of a random variable X is defined as
Λ(t) = logE[exp(tX)].
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inf{x∈X|πN (x)=y}I(x), y ∈ Y, the supremum defining I is monotone in N be-
cause projections are nested.

The theorem allows extending the rate function from a lower to higher projection
space. The implementation of this theorem in LAD model is seen in Section 4.

4 Methodology
Consider the case of multivariate time series data. Let {tn}Nn=1 be a set of
multivariate time series datasets where tn = (tn,1, . . . , tn,T) is a time series of
length T and each tn,t has d attributes. The motivation is to identify anomalous
tn that diverge significantly from the non-anomalous counter parts at a given or
multiple time steps. The main challenge is to design a score for individual time
series that evolves in a temporal setting as well as enables tracking the initial time
of deviation as well as the scale of deviation from the normal trend. As shown
in following sections, our model addresses the problem through the use of rate
functions derived from large deviations principle. We use the Dawson-Gärtner
Projective LDP (See Section 4.2) for projecting the rate function function to a
low dimensional setting while preserving anomalous instances. The extension to
temporal data (See Section 4.3) is done by collectively studying each time series
data as one observation.

4.1 Large Deviations for Anomaly Detection

Our approach uses a direct implementation of LDP to derive the rate function
values for each observation. As the theory focuses on extremely rare events, the
raw probabilities associated with them are usually very small [9, 24]. However,
the LDP provides a rate function that is used as a scoring metric for LAD.

Consider a dataset X of size n. Let a = {a1, . . . ,an} and I = {I1, . . . , In} be
anomaly score and anomaly label vectors for the observations respectively such
that ai ∈ [0, 1] and Ii ∈ {0, 1} ∀i ∈ {1, 2, . . . , n}. By large deviations principle, we
know that for a given dataset X of size n, P (X̄ = p) ≈ e−nI(p). Assuming that
the underlying data is standard Gaussian distribution with mean 0 and variance

1, we can use the rate function for Gaussian data where I(p) = p2

2 . Then the

resulting probability that the sample mean is p is given by P (X̄ = p) ≈ e−n p2

2 .
Now, in presence of an anomalous observation xa, the sample mean is shifted
by approximately xa/n for large n. Thus, the probability of the shifted mean

being the true mean is given by P (X̄ = xa/n) ≈ e−
x2
a

2n . However, for large n
and |xa| << 1, the above probabilities decay exponentially which significantly

reduces their effectiveness for anomaly detection. Thus, we use
x2
a

2n as anomaly
score for our model. Thus generalizing this, the anomaly score for each individual
observation is given by ai = nI(xi) ∀i ∈ {1, 2, . . . , n}.
4.2 LDP for High Dimensional Data

High dimensional data pose significant challenges to anomaly detection. Presence
of redundant or irrelevant features act as noise making anomaly detection dif-
ficult. However, dimensionality reduction can impact anomalies that arise from
less significant features of the datasets. To address this, we use the Dawson-
Gärtner Projective theorem in LAD model to compute the rate function for
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high dimensional data. The theorem records the maximum value across all pro-
jections which preserves the anomaly score making it optimal to detect anomalies
in high dimensional data. The model algorithm is presented in Algorithm 1.

Algorithm 1: Algorithm 1: LAD Model

Input: Dataset X of size (n, d), number
of iterations Niter, threshold th.

Output: Anomaly score a
Initialization: Set initial anomaly score
and labels a and I to zero vectors and,
entropy matrix E = 0(n,d) where 0(n,d) is
a zero matrix of size (n, d).

for each s → 1 to Niter do
1. Subset Xsub = X[Ii == 0]
2. Xnormalized[:, di] =

X[:,di]− ¯Xsub[:,di]
cov(Xsub[:,di])

, ∀di ∈ {1, . . . , d}
3. E[i, :] = −Xnormalized[i]

2/2n,∀i
4. ai = −max(E[i, :])

5. a = a−min(a)
max(a)−min(a)

6. th = min(th, quantile(a,0.95)
7. Ii = 1 if ai > th, ∀i

4.3 LAD for Time Series Data
Broadly, time series anomalies can be categorized to two groups [6]: (1) Di-
vergent trends/Process anomalies: Time series with divergent trends that
last for significant time periods fall into this group. Here, one can argue that
generative process of such time series could be different from the rest of the
non-anomalous counterparts, and (2) Subsequence anomalies: Such time se-
ries have temporally sudden fluctuations or deviations from expected behavior
which can be deemed as anomalous. These anomalies occur as a subsequence of
sudden spikes or fatigues in a time series of relatively non-anomalous trend. The
online extension of the LAD model is designed to capture anomalous behavior at
each time step. Based on the mode of analysis of the temporal anomaly scores,
one can identify both divergent trends and subsequence anomalies. In this paper,
we focus on the divergent trends (or process anomalies). In particular, we try
to look at the anomalous trends in COVID-19 cases and deaths in US counties.
Studies to collectively identify divergent trends and subsequence anomalies is
being considered as a prospective future work.

In this section, we present an extension of the LAD model to multivariate
time series data where we preserve the dependency temporal and across different
features of the time series. Thus, as shown in Algorithm 2, a horizontal stacking
of the data is performed. This allows collective study of temporal and non-
temporal features. To preserve temporal dependency, the anomaly scores and
labels are carried on to next time step where the labels are then re-evaluated.

As long term anomalies are of interest, time series with temporally longer
anomalous behaviors are ranked more anomalous. The overall time series anomaly

score An for each time series tn can be computed as An =
∑T

t=1 I[n,t]

T ∀n. For
a database of time series with varying lengths, the time series anomaly score
is computed by normalizing with respective lengths. Similarly, the method can
be extended to studying anomalies within an individual time series by break-
ing the series into a database of sub-sequences of a time series extracted via a
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Algorithm 2: Algorithm 2: LAD for Time series anomaly detection

Input: Time series dataset
{tn}Nn=1 of size (N,T, d),
number of iterations Niter,
threshold th, window w.
Output: An array of tem-
poral anomaly scores a, an
array of temporal anomaly
labels I
Initialization: Set initial
anomaly score and labels
a and I to zero matrices
of size (N,T ) and, entropy
matrix E to a zero matrix
of size (N,T, d).

for each t → 1 to T do
X = hstack( ¯tn,t) where ¯tn,t = {tn,t−w, . . . tn,t}
I[i, t] = I[i, t− 1]
a[:, t] = a[:, t− 1]
for each s → 1 to Niter do

1. Subset non-anomalous time series
Xsub = {X[i, :]|I[i, t] == 0, ∀i}

2. Xnormalized[:, di] =
X[:,di]− ¯Xsub[:,di]
cov(Xsub[:,di])

, ∀di ∈
{1, 2, . . . , d ∗ w}

3. E[i, :] = −Xnormalized[i]
2/2n,∀i

4. a[i, t] = −max(E[i, :])

5. a[:, t] = a[:,t]−min(a[:,t])
max(a[:,t])−min(a[:,t])

6. th = min(th, quantile(a[:, t],0.95)
7. I[i, t] = 1 if a[i, t] > th,∀i

sliding window. It must be noted that this approach allows for a retrospective
classification of anomalies.

5 Experiments
In this section, we evaluate the performance of the LAD algorithm on multi-
aspect datasets. The following experiments have been conducted to study the
model: 1) Anomaly Detection Performance: LAD’s ability to detect real-world
anomalies as compared to state-of-the-art anomaly detection models is evaluated
using the ground truth labels. 2)Handling Large Data: Scalability of the LAD
model on large datasets (high observation count or high dimensionality) are
studied. 3) COVID-19 Time Series Data.
5.1 Datasets
We consider a variety of publicly available benchmark data sets from Outlier
Detection DataSets ODDS [19] (See Tables 1) for the experimental evaluation.
For anomaly detection within individual time series, we study univariate time
series data from Numenta Benchmark Datasets 6. Additionally, for the time
series data, we use COVID-19 deaths and confirmed cases for US counties from
John Hopkins COIVD-19 Data Repository [10]. The country level global data
for COVID-19 trends was taken from the Our World in Data Repository [20].

5.2 Baseline Methods and Parameter Initialization
As described in Section 4, LAD falls under unsupervised learning regime tar-
geted for high dimensional data, we do not compare with supervised algorithms.
For this we consider Elliptic Envelope (EE) [21], Isolation Forest (I-Forest) [15]7,

6 http://numenta.com/press/numenta-anomaly-benchmark-nab-evaluates-anomaly-
detection-techniques.htm

7 I-Forest model returns both anomaly scores and anomaly labels though we only
present classification model since they outperforms score based schemes.
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Table 1: Description of the benchmark data used for evaluation of the anomaly de-
tection for high dimensional/large sample datasets and time series. N - number of
instances, d - number of attributes and a - fraction of known anomalies in the data set.

Name N d a

HTTP 567498 3 0.39%
MNIST 7603 100 9.207%
Arrhythmia 452 274 14.602%
Shuttle 49097 9 7.151%
Letter 1600 32 6.25%
Musk 3062 166 3.168%
Optdigits 5216 64 2.876%
Satellite Img. 6435 36 31.639%
Speech 3686 400 1.655%
SMTP 95156 3 0.032%
Satellite Img.-2 5803 36 1.224%
Forest Cover 286048 10 0.96%
KDD99 620098 29 29 0.17%

(a) High Dimensional and Large Sample
Datasets

Dataset N a

EC2 CPU UTILIZATION 825CC2 4032 0.09%
EC2 NETWORK IN 257A54 4032 0.1%
EC2 CPU UTILIZATION 5F5533 4032 0.1%
EC2 CPU UTILIZATION AC20CD 4032 0.1%
EC2 CPU UTILIZATION 24AE8D 4032 0.1%
SPEED 7578 1127 0.1%
SPEED 6005 2500 0.1%
OCCUPANCY 6005 2380 0.1%
SPEED T4013 2495 0.1%
ART LOAD BALANCER SPIKES 4032 0.1%
EXCHANGE-3 CPM RESULTS 1538 0.1%
EXCHANGE-4 CPM RESULTS 1643 0.1%
TWITTER VOLUME KO 15851 0.1%
TWITTER VOLUME CVS 15853 0.1%
TWITTER VOLUME CRM 15902 0.1%
MACHINE TEMP. SYS. FAILURE 22695 0.1%
EC2 REQ. LATENCY SYS. FAILURE 4032 0.09%
CPU UTIL. ASG MISCONFIG. 18050 0.08%

(b) Benchmark Time Series

local outlier factor (LOF) [4], and Concentration Free Outlier Factor CFOF [2].
The CFOF and LOF models assign an anomaly score for each observation, while
remaining methods provide an anomaly label. As above mentioned methods are
parametric, we investigated a range of values for each parameter, and report the
best results. For Isolation Forest, Elliptic Envelope and CFOF, the contamina-
tion value is set to the true proportion of anomalies in the dataset. To study
anomaly detection in time series, the LAD model is compared with other score
based time series anomaly detection algorithms like Twitter AD Vec (TAV) [14],
Skyline [22], Earthgecko Skyline (E.Skyline) 8, Numenta [1], Relative Entropy
(RE) [25] , Random Cut Forest (RCF) [12], Windowed Gaussian (WG). The
LAD model relies on a threshold value to classify observations with scores the
value as strictly anomalous. Though this value is iteratively updated, an initial
value is required by the algorithm. In this paper, the initial threshold value for
the experiment is set to 0.95 for all datasets. All the methods for anomaly detec-
tion benchmark datasets are implemented in Python and all experiments were
conducted on a 2.7 GHz Quad-Core Intel Core i7 processor with a 16 GB.

5.3 Evaluation Metrics

As LAD is an score based algorithm, we study the ROC curves by comparing
the True Positive Rate (TPR) and False Positive Rate (FPR), across various
thresholds. The final ROC-AUC (Area under the ROC curve) is reported for
evaluation. For anomaly detection within individual time series, we use the F-
measure as the evaluation metric to study the overall performance of the model.
Since all the models return anomaly scores, thresholds were used to classify
observations as anomalous vs non-anomalous. Threshold was set to be the maxi-
mum score in the truly non-anomalous data for each model and the observations
with scores higher than set threshold were labelled anomalous. This is to ensure
that the model is able to distinguish anomalies from the rest of the data. For
time series database anomaly detection, we present the final outliers and study
their deviations from normal baselines under different model settings.
8 https://github.com/earthgecko/skylin
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5.4 Anomaly Detection Performance
Table 2 shows the performance of LOF, I-Forest, EE, CFOF and LAD on
anomaly detection benchmark datasets. Due to relatively large run-time9, CFOF
results are shown for datasets with samples less than 10k. For all the listed al-
gorithms, results for best parameter settings are reported. The proposed LAD
model outperforms other methods on most data sets. For larger and high dimen-
sional datasets, it can be seen from Table 2 that the LAD model outperforms all
the models in most settings.10 It was interesting to note that the LAD model,
despite being non-parametric (for a non-temporal setting), had a comparable if
not better performance as compared to the LOF, EE, I-Forest and CFOF where
multiple parameter setting were tested to derive the best fitting model. To study
the LAD model’s computational effectiveness, we study the computation time
and scaling of LAD model on large and high dimensional datasets. Figure 2a
shows the scalability of LAD with respect to the number of records against the
time needed to run on the first k records of the KDD-99 dataset. Each record
has 29 dimensions. Figure 2b shows the scalability of LAD with respect to the
number of dimensions (linear-scale). We plot the time needed to run on the first
1, 2, ..., 29 dimensions of the KDD-99 dataset. The results confirm the linear
scalability of LAD with number of records as well as number of dimensions.

Table 2: Comparing LAD with existing
anomaly detection algorithms for large/ high
dimensional datasets using ROC-AUC as the
evaluation metric.
Data LOF I-Forest EE CFOF LAD

SHUTTLE 0.52 0.98 0.96 - 0.99
SATIMAGE-2 0.57 0.95 0.96 0.70 0.99
SATIMAGE 0.51 0.64 0.65 0.55 0.6
KDD99 0.51 0.85 0.54 - 1.0
ARRHYTHMIA 0.61 0.67 0.7 0.56 0.71
OPTDIGITS 0.51 0.52 - 0.49 0.48
LETTER 0.54 0.54 0.6 0.90 0.6
MUSK 0.5 0.96 0.96 0.49 0.96
HTTP 0.47 0.95 0.95 - 1.0
MNIST 0.5 0.61 0.65 0.75 0.87
COVER 0.51 0.63 0.52 - 0.96
SMTP 0.84 0.83 0.83 - 0.82
SPEECH 0.5 0.53 0.51 0.47 0.47

(a) LAD scales linearly with the number of
records for KDD-99 data

(b) LAD scales linearly with the number of di-
mensions in KDD-99 data.

Fig. 2: LAD Model Scaling on Large and
High Dimensional Data

5.5 Anomaly Detection in Individual Time Series
In Table 3, we compare the performance of the LAD model as compared to
other score-based algorithms. In particular, it can be seen that LAD model with
window length of 100 has the best anomaly detection performance as compared
other methods in most datasets.

5.6 Anomaly Detection in Time Series Data

This section presents the results of LAD model on COVID-19 time series data
at the US county level. Multiple settings were used to understand the data: 1.

9 The CFOF model is computationally expensive and its use is primarily for high-
dimensional data. We restrict results to datasets with <10K observations.

10 Lowest AUC values for the LAD model are observed for Speech and Optdigits data
where multiple true clusters are noted.
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Table 3: Comparing LAD with existing anomaly detection algorithms for time series
datasets using F-measure as the evaluation metric.
Data WL=10 WL=50 WL=100 TAV Skyline E.Skyline Numenta RE RCF WG

EC2 CPU UTIL. 825CC2 0.0 0.1 0.37 0.16 0.45 0.16 0.03 0.05 0.13 0.19
EC2 NETWORK IN 257A54 0.14 0.25 0.33 0.03 0.04 0.18 0.02 0.01 0.03 0.02
EC2 CPU UTIL. 5F5533 0.14 0.36 0.57 0.18 0.03 0.18 0.01 0.03 0.04 0.0
EC2 CPU UTIL. AC20CD 0.0 0.31 0.33 0.03 0.02 0.01 0.01 0.03 0.0 0.11
EC2 CPU UTIL. 24AE8D 0.09 0.12 0.59 0.01 0.01 0.0 0.0 0.0 0.0 0.01
SPEED 7578 0.26 0.29 0.54 0.19 0.08 0.05 0.05 0.08 0.02 0.17
SPEED 6005 0.15 0.59 0.59 0.04 0.11 0.11 0.03 0.04 0.04 0.01
OCCUPANCY 6005 0.08 0.29 0.5 0.01 0.01 0.01 0.01 0.01 0.01 0.0
SPEED T4013 0.27 0.88 0.45 0.15 0.16 0.02 0.04 0.03 0.13 0.14
ART LOAD BALANCER SPIKES 0.08 0.16 0.15 0.02 0.01 0.0 0.0 0.01 0.0 0.08
EXCHANGE-3 CPM RESULTS 0.0 0.4 0.77 0.01 0.01 0.01 0.01 0.03 0.01 0.01
EXCHANGE-4 CPM RESULTS 0.21 0.21 0.17 0.02 0.04 0.04 0.05 0.19 0.05 0.05
TWITTER VOL. KO 0.01 0.06 0.11 0.01 0.01 0.0 0.01 0.0 0.0 0.03
TWITTER VOL. CVS 0.04 0.06 0.12 0.03 0.01 0.01 0.01 0.01 0.01 0.03
TWITTER VOL. CRM 0.01 0.06 0.11 0.03 0.01 0.0 0.0 0.01 0.01 0.01
MACHINE TEMP SYS. FAIL. 0.02 0.04 0.08 0.18 0.03 0.01 0.0 0.02 0.03 0.0
EC2 REQ LATENCY SYS. FAIL. 0.2 0.62 0.35 0.15 0.04 0.15 0.02 0.15 0.03 0.02
CPU UTIL ASG MISCONFIG. 0.03 0.24 0.83 0.04 0.0 0.0 0.0 0.02 0.0 0.0

Deaths and confirmed case trends were considered for analysis. 2. Daily New
vs Total Counts: Both total cases as well daily new cases were analyzed. 3.
Complete history vs One Time Step: Two versions of the model were studied
where data from previous time steps were and were not considered. By this, we
tried to distinguish the impact of the history of the time series on identifying
anomalous trends. 4. Univariate vs Multivariate Time Series data: To further
understand the LAD model, the deaths and case trends were studied individually
as a univariate time series as well as collectively in a multivariate time series data
setting. 5. Time Series of Uniform vs Varying Lengths: Finally, all the above
analyses were conducted on time series data with varying lengths. Here, for each
county level time series, the time of first event was considered as initial time
step to objectively study the relative temporal changes in trends. To bring all
the counts to a baseline, the total counts in each time series were scaled to the
respective county population. Missing information was replaced with zeros and
counties with population less than 50k were eliminated from the study.

(a) Total Confirmed, Full History (b) Total Deaths, Full History

(c) Total Confirmed, One Time Step (d) Total Deaths, One Time Step

Fig. 3: Top 5 Counties with Anomalous Trends : Varying lengths, Total Counts, Mul-
tivariate Time Series
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(a) Total Confirmed, One Time Step (b) Total Deaths, One Time Step

Fig. 4: Top 5 Counties with Anomalous Trends : Uniform lengths, Total Counts, Mul-
tivariate Time Series

5.7 Discoveries: US COVID-19 Trends

In this section, we look at the the daily new case and deaths in US counties
trends in start of 2021. To rank the counties, anomaly scores between Jan 1 -
Mar 1 2021 were considered.
Complete history vs One Time Step The full history setting considers the com-
plete history of the time series and is aimed to capture most deviant trends over
time. The one time step (or any smaller window) setting is more suitable to
study deviations within the specific window. As we target long term deviating
trends, the one time step setting returns trends that have stayed most deviant
throughout the entire time range. This can be seen in Figures 3 and 4 where the
one time step setting returns trends that have stayed deviant almost throughout
the duration while the full history setting is able to capture significantly higher
overall deviations from normal trends and therefore higher anomaly score. For
instance, counties like Mercer(NJ), Union (NJ), that had extensive testing con-
ducted11 were captured in the one time step model as seen in Figure 3c and
3d. Similarly, counties in NY observed a peak in early 2021 12, which was not
captured as anomalous in the one time step model as seen in Figures 1a and 1b.

(a) New Confirmed, Full History (b) New Deaths, Full History

Fig. 5: Top 5 Counties with Anomalous Trends : Varying lengths, Daily New Counts,
Multivariate Time Series

Univariate vs Multivariate Time series In Figures 3, 4, 5 and 6 we see the
anomalous trends in multivariate time series, where total confirmed cases and
deaths were collectively evaluated for anomaly detection. For instance, despite
the near-normal trends in confirmed cases, Kings, Queens and Bronx (NY)13

11 https://www.nj.com/coronavirus/2021/12/more-covid-testing-sites-opening-as-
cases-climb-here-are-9-places-to-go.html

12 https://www.newsday.com/news/health/coronavirus/coronavirus-long-island-
deaths-vaccinations-1.50200404

13 https://www.nbcnewyork.com/news/coronavirus/nyc-mask-mandate-indoors-an-
option-if-needed-mayor-says-as-23-nations-report-omicron/3428102/
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(a) New Confirmed, Full History (b) New Deaths, Full History

Fig. 6: Top 5 Counties with Anomalous Trends : Uniform lengths, Daily New Counts,
Multivariate Time Series

in Figures 3c- 3d, were identified anomalous due to their the deviant death
trends which significantly contributed to the anomaly scores. This setting enables
identification of time-series with at least one deviating feature.

(a) Total Confirmed, Full History (b) Total Deaths, Full History

Fig. 7: Top 5 Counties with Anomalous Trends: Varying lengths, Total counts

(a) Total Confirmed, Full History (b) Total Deaths, Full History

Fig. 8: Top 5 Counties with Anomalous Trends: Uniform lengths, Total counts

Daily New vs Total Counts Figures 4 and 6, show anomalous trends in multi-
variate time series for total and daily new counts respectively. It can be seen that
the anomaly score is relatively more erratic for new case trends as the data for
new case and death counts is more erratic leading to fluctuating normal average
and non-smooth anomaly scores. Similar behavior can be seen across Figures
3 and 5. The LAD model on the daily new counts data was able to capture
the escalation in Racine, Wisconsin in Figure 6a and 6b during late 2020 when
multiple meatpacking were tied to COVID-19 cases14.

Uniform Length vs Varying Length Time Series The US county cases and deaths
data consists of time series of uniform lengths. However, not all counties have
events recorded in the early stages. Thus, studying the non-synchronized database
creates a bias against counties with early reported cases. Also, counties with
longer reporting on trends or earlier outbreaks tend to be associated with higher

14 https://www.jsonline.com/story/news/2020/11/25/meatpacking-plants-tied-more-
covid-19-cases-than-known-new-bussiness-outbreak-data-shows/6376197002/
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anomaly scores towards the most recent data due to lack of equally long time
series. This can be seen in Figures 4 where counties like Lane, Oregon that was
flagged anomalous due to distinctively low cases due to later outbreak of the
pandemic much after many counties in NY, unlike in Figures 3 which reports
counties in NY with an early start as highly anomalous in the later stages15.

5.8 Global Trends and Emergence of Other COVID-19 Variants

Coronavirus Pandemic (COVID-19) Data from Our World in Data [20] for coun-
tries with population more than 5 million was used for the analysis. Trends in
the daily new deaths per million and confirmed cases per million (7 day rolling
average, right-aligned), biweekly growth rates in deaths and confirmed cases and
case fatality rates were considered collectively as multivariate time series. Two
end dates were studied to analyze the onset of the Delta and Omicron variants.

Delta Variant To rank the trends post the incidence of the Delta variant (See
Figures 9a-9c), we considered behaviors during the 90 day period May 1 2021 -
July 29 2021. China, Egypt, Mexico, Tanzania and Columbia were found most
anomalous. In particular, China and Mexico had low per capita weekly average
deaths and confirmed cases. However, the case fatality rates were consistently
high 16 indicating need for additional investigation to understand the root cause
which may be under-reporting or reporting issues or presence of a new variant.

(a) Delta Variant: Daily new cases per million
people (rolling 7-day average)

(b) Delta Variant: Daily new deaths per million
people (rolling 7-day average)

(c) Delta Variant: Case Fatality Rates
(d) Omicron Variant: Daily new cases per million
people (rolling 7-day average)

(e) Omicron Variant: Daily new deaths per mil-
lion people (rolling 7-day average)

(f) Omicron Variant: Case Fatality Rates

Fig. 9: Top 5 Anomalous Country-level Trends: Delta and Omicron Variants

15 https://time.com/5812569/covid-19-new-york-morgues/
16 https://www.marketwatch.com/story/new-daily-covid-19-cases-and-deaths-spike-

to-6-week-highs-as-delta-variant-spreads-rapidly-11625673956
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Omicron Variant To study the Omicron variant, we looked at the 90 day period
data September 23 2021 - December 21 2021 (See Figures 9d-9f). UK, China
have the most anomalous trends. Egypt, UK and Russia also have high anomaly
scores 17. However, in Egypt and Russia, the surge in cases was not due to the
Omicron variant but due to earlier COVID wave that coincides with the it18.

6 Conclusion
In this paper, we propose LAD, a novel scoring algorithm for anomaly detec-
tion in large/high-dimensional data. The algorithm successfully handles high
dimensions by implementing large deviation theory. Our contributions include
reestablishing the advantages of large deviations theory to large and high dimen-
sional datasets. We present an online extension of the model aimed to identify
anomalous time series in a multivariate time series data. The model shows vast
potential in scalability and performance against baseline methods. The online
LAD returns a temporally evolving score for each time series that allows us to
study the deviations in trends relative to the complete time series database.

A potential extension to the model could include anomalous event detection
for each individual time series. Another possible future work could be extending
the model to enable anomaly detection in multi-modal datasets. Additionally,
the online LAD model could be enhanced to use temporally weighted scores
prioritizing recent events.
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