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Abstract. The expansion of modern supply chains constantly triggers the need 

of maintaining resilience and agility for higher profit. There is a need to change 

the standard methods of inventory control to new approaches that are highly 

adaptable to uncertainties that emerged as a result of supply chains globalization. 

In this paper, a novel approach based on neural network, state-space control and 

robust optimization is proposed to support the perishable inventory replenish-

ment decisions subject to uncertain lead times. We develop an approach based on 

the Wald criterion to compute optimal robust (i.e. “best of the worst” case) con-

troller parameters. We incorporate lead-time specific perturbations through plau-

sible scenarios using several lead times sets. Based on extensive numerical ex-

periments, the obtained solutions highlight that the approach provides stable and 

robust solutions even for high lead times.  

Keywords: Inventory Control, Simulation, Optimization, Uncertain Lead time, 

Neural Networks, Genetic Algorithm 

1 Introduction 

Over the last decade, the inventory systems have expanded significantly. Nowadays,  

they are exposed to the highly changeable environment. Not only the uncertainty of 

market demand can contribute to rising costs, but also the uncertainty of perishability 

process, variable lead-time, delays. Nowadays, one of the utmost important goals of 

modern supply chains with growing uncertainty is to build and maintain agility [1]. 

Fullfilling orders can be challenging tasks in case of variable environment where cus-

tomers expect more flexibility than ever. Increasing the efficiency of order management 

systems in terms of automating many steps that requires manual involvement  can en-

hance the goods flow, increase profitability and prevent shortages.  

 There is a lot of work with optimal inventory policies dedicated to the system with 

demand uncertainty while including no uncertainties connected to the production and 

distribution processes instabilities [2]. For example in [3], the effect of time value of 

money and inflation on optimal ordering policy is investigated but in the case of zero 

lead-time. Many policies have been proposed for inventory problems under stochastic 

demand and constant lead time, for example, the basestock policy (also called “order-

up-to” policy) and is widely implemented in industry, but the existed methods are not 
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sufficient to keep the modern supply chain at optimal levels because of constant lead-

time assumption. For example, in [4] the optimal basestock levels are calculated in the 

subject of uncertain demand. Therefore, there is a need to develop methods that cope 

also with uncertainty in the supply chains in terms of lead times.  Lead time in inventory 

management is the time between placing an order to replenish inventory and order re-

ceiving. Lead-time uncertainty is usually concerned with unexpected shipment (or pro-

duction) delays [2]. Lead time is one of the utmost important factors that affect the 

stock level at any point in time.  The areas which are affected by this kind of uncertainty 

are the agri-food, electrical, medicine (e.g. blood supply chains) and many more. With 

a view to the above matters, a lot of practitioners and researchers are active in this area 

of study. In [5] a model to minimize the total cost of an integrated vendor-buyer supply 

chain when the lead time is stochastic is proposed with constant demand rate assump-

tion. Another example is study [6] in which an inventory model with the randomly 

variable lead time is developed also under constant demand assumption. In real supply 

chains constant demand is not often encountered, hence some more advanced methods 

based on robust optimization started to be implemented in industry.  

Robust optimization is considered as a promising approach to deal with uncertainties 

[7]. The robust optimization has been widely studied in supply chains problems show-

ing promising computational results for problems under demand uncertainty ( e.g., see 

[8], [9], [10], [4], [11]). 

In the above papers involving demand uncertainty, the supply-side is assumed to be 

deterministic and order lead times are assumed to be either zero or fixed. There are a 

few papers that deal with supply and demand uncertainty. An inventory control model 

under demand and lead time uncertainty is studied in [12] where the tri-level optimiza-

tion-based approach is used, but without considering the perishable products. Further-

more, there is a work that includes lead-time uncertainty and uses a robust optimization 

approach [13] – there is an approach based on Benders’ decomposition to calculate 

optimal robust policy parameters. The work proposes the approach for robust optimi-

zation and applies it to the basestock problem. We want to extend this study to the case 

with perishable products and developing also a controller based on neural networks in 

the proposed approach, not only an optimization method.  

In this paper, we proposed a method to reduce the influence of lead-time uncertainty on 

the robustness of the inventory system with perishable products. The presented ap-

proach for inventory control uses the combination of artificial neural networks and ge-

netic algorithm optimization. For method validation, the nonlinear, discrete-time model 

of inventory system is implemented in Matlab environment together with neural net-

work and applied to the problem of control the perishable goods flow. The proposed 

method is tested with the use of the set of initial conditions, different lead times, a 

variety of lead-times uncertainties, and two fixed shelf-lives. For developed controllers, 

the testing errors are calculated and the analysis of lead-time uncertainty on testing 

error, stock level and order quantity is presented.  

2 Problem definition and assumptions 

In this paper, we focus on the problem of inventory system control with lead-time un-

certainty and perishable products. The problem considers the calculation of order 
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quantity while balancing two conflicting goals: deliver a sufficient number of products 

on time and keep inventory levels down. The purpose of such an inventory control sys-

tem is to determine when and how much to order. This decision should be based on the 

current inventory state, the expected demand, the lead-time, possible delays, and other 

cost factors. In this paper, we propose the approach, which includes the solution steps 

for the problem of inventory system optimization in case of uncertain lead-time. For 

the offline testing of the control approach the nonlinear, discrete-time perishable inven-

tory with fixed lifetime products, proposed in [14], is implemented in Matlab environ-

ment. The considered class of inventory system assumes that stored products have a 

fixed shelf-life. The following assumptions are used for formulating the model and the 

investigated problem:  

1. The review period is constant and equals one day.  

2. The products are sold according to FIFO policy. 

3. The inventory contains a single type of product.  

4. Lead-time s may be uncertain.   

5. Shortages are allowed but are not backlogged. Excess demand is lost.  

6. There is one stocking point in each period. 

7. Demand is a time-varying function.  

8. Deterioration occurs as soon as the items are received into inventory. 

9. The shelf-life l is fixed and known a priori. After l days all items from the 

same batch are expired and became unsellable waste. Lost units are not re-

placed.  

 

The applied notation of applied inventory model is presented in the Table 1.  

Table 1. The model parameters and variables – applied notation 

Symbol Definition 

N Length of the simulation horizon 

k ∈{1,2,…,N} Discrete-time 

l The shelf-life of a product 

i ∈{1,2,…,l} Index of state variables 

s Lead time  

s∆ Uncertain lead time 

s0 Nominal lead time 

∆ Lead time perturbation 

dmax The maximum demand in one period k 

x(k) Vector of state variables 

y(k) Inventory level (on-hand stock) 

u(k) Order quantity 

d(k) Aggregated demand 

di(k) Demand for products of age i 

h(k) Aggregated amount of sold products 
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hi(k) Sold products of age i 

n Number of neurons in the hidden layer 

v The vector of network weights 

aj Activation function in the first layer 

ej Activation function in the second layer 

cj Transformation function in the second layer 

 

In the applied inventory model, the demand is modelled as an unknown a priori, 

bounded function of discrete-time: 0 ≤ ℎ(𝑘) ≤ 𝑑(𝑘) ≤ 𝑑𝑚𝑎𝑥 .  There is full demand 

satisfaction when the number of sold products: ℎ(𝑘) ∈ ℝ≥0 is equal to the current de-

mand 𝑑(𝑘) ∈ ℝ≥0, ℎ(𝑘) = 𝑑(𝑘).  The maximum value of imposed demand for prod-

ucts per k period is constrained by 𝑑𝑚𝑎𝑥 ∈ ℝ>0. The orders are calculated in regular 

intervals on the basis of the expected demand 𝑑(𝑘)  and the inventory state  𝑥𝑖(𝑘) ∈
ℝ≥0. The inventory state can be divided into two parts: (a) the on-hand stock per age i 

𝑥𝑠+1(𝑘),   𝑥𝑠+2(𝑘), … , 𝑥𝑙(𝑘) ;(b) work-in-progress deliveries 𝑥1(𝑘),   𝑥2(𝑘), … , 𝑥𝑠(𝑘). 

In this model, i represents the age of products, e.g. 𝑑𝑠+1(𝑘)  is the demand for the fresh-

est products available in the inventory. The total amount of  the sold products is given 

by: ℎ(𝑘) = ∑ ℎ𝑖(𝑘)𝑙
𝑖=1 , where: ℎ𝑖(𝑘) ∈ ℝ≥0 –  sold products of age i.  

In general we assume that lead-time s may be not known exactly. In such case the un-

certain lead-time is denoted as sΔ , and takes the following additive form: 

 

0s s = +    (1) 

 

where: s0 is a nominal value of lead-time and Δ is unknown, but bounded perturbation 

such that |Δ| ≤ 𝛿. 

As inventory systems become more complex, representing them with differential equa-

tions or state-space models becomes highly advanced. Considering that, for efficient 

implementation in Matlab, the model is formulated using a state-space approach. State-

space representation of this system is  given by l equations: 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

2 1 1

1 1

1

1

1l l l

x k u k

x k x k h k

x k x k h k− −

 + =


+ = −


 + = −

  (2) 

State variable 𝑥𝑖(𝑘) ∈ ℝ≥0 keeps the information about products quantity of age i. Or-

der quantity 𝑢(𝑘) is a nonnegative and real number. A more profound explanation of 

inventory model fundamentals is presented in [14]. 
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3 Proposed approach 

The main purpose of the proposed approach is to calculate order quantities and their 

frequency for the inventory system under lead-time uncertainty while obtaining optimal 

performance in terms of shortage and holding costs minimization. The proposed ap-

proach uses two main tools: (a) genetic algorithm (GA) which is used for the learning 

stage; (b) neural network (NN) which is designed for the goods flow control in the 

perishable inventory system with lead-time uncertainty. In Table 2, there are main pa-

rameters that are assumed in the proposed approach. 

We adopted the artificial neural network as a controller to control the flow of perishable 

products in case of lead-time uncertainty. Furthermore, the proposed approach includes 

also genetic algorithm application for the learning process of neural networks. A ge-

netic algorithm is used as an optimization tool for calculating neural network weights. 

The proposed approach can be represented by diagram in Fig.1.   

 

 
Fig. 1. The diagram of proposed approach. 

 

The proposed approach can be explained as follows:  the first step is to generate the 

random initial conditions of inventory state in range (0,2). Next step is the optimization 

process. The goal of the optimization process is to tune the weights of neural networks 

that minimize the quality cost for the worst-case scenario of lead-time uncertainty. The 

quality cost is represented as a weighted sum of lost sales and holding cost with the 

assumption that the cost of lost sales is 3 times higher than the cost of holding cost.  

Finally, testing process of the obtained results is performed using a set of different ini-

tial conditions of inventory and different lead-times uncertainties (from the selected 

uncertainty range). 

Table 2. Parameters of GA and NN. 

Approach part Parameter Value 

 the number of variables  n(l+2) 

 the maximum number of generation  4000 

GA population size  2000 
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 parallel computing  True 

 ANN model  multi-layered perceptron 

  the number of neurons in hidden layer   3 

NN the number of input node  l 

 the number of output node  1 

 the number of hidden layer   1 

 the number of hidden node  3 

 Activation function on the hidden layer  satlin 

 Activation function on the output layer  poslin 

 

The developed neural network controller consists of three layers: input, hidden and out-

put layer. The applied structure of the neural network is depicted in Figure 2. The input 

of the neural network controller is the state vector  𝐱(𝑘) ∈ ℝ≥0which is the number of 

products on every shelf – shelf represents the age of the product. The products are 

picked from the shelf to fullfill the current orders. The output of the neural network is 

the control 𝑢(𝑘) ∈ ℝ≥0which is the order quantity generated in order to satisfy the de-

mand 𝐝(𝑘) ∈ ℝ≥0. The applied structure is a feed-forward network, in which the acti-

vation functions: saturating linear transfer function aj, positive linear transfer function 

ej and transformations cj and 𝑢̌ occur. The controller on the basis of current stock age 

and work-in-progress deliveries is able to generate the optimal order quantity for each 

day k. The weights are the elements of vector v.  

 

 
 

Fig. 2. The applied structure of the neural network controller. 
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The learning process is formulated as an optimization problem of a perishable inventory 

system with uncertainty with the use of the genetic algorithm. The objective of the con-

sidered optimization problem is to establish weights of the neural network (Figure 2) 

so that the inventory system may satisfy the customers’ needs (3) and minimize the 

holding cost (4)  at the same time. The first criterion is describing the number of lost 

sales due to stock shortages: 

 

( ) ( )( )
1

N

h

k s

J d k h k
= +

= −  (3) 

 

As a second criterion for optimization, the surplus of stock over demand is considered:  

 

 

( )
1

N

y

k s

J m k
= +

=   (4) 

 

where:  

 

( )
( ) ( ) ( ) ( ) ( ) ( )for

0 for otherwise

y k d k y k d k y k d k
m k

−   
= 


 (5) 

 

The inequalities in above relationship (5) eliminate the penalty for the stock which re-

sults only from the initial conditions x0, where ŷ(𝑘) is free response of the system. 

Formulated criteria can be written as the weighted cost function:  

3 h yJ J J=  +  (6) 

 Formally, the optimization problem may be stated as follows:  

 

( )min max ,

s.t.

J

 




−   

v
v

 (7) 

The optimization is performed for assumed set of initial inventory states x0. As a result 

of the optimization process, the vector of weights v is obtained. In this way, the inven-

tory controller can be optimized with a view to uncertain demand, perishability and the 

state vector 𝐱(𝑘). This approach provides flexibility and resilience, making the inven-

tory system being more robust for uncertain changes of lead-time. In the further part of 

the work, the proposed approach is called robust neural network controller (in short: 

RNN controller). 
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4 Simulation results 

In this section, we apply the proposed approach to control the perishable inventory sys-

tem with uncertain delay. The simulation research is divided into five parts. The first 

one is focused on analyzing the performance of the proposed controllers in terms of  

lead-time influence on testing error. In the second part, the effect of the lead-time per-

turbation on stock level and cost function is investigated. In order to present the perfor-

mance of proposed approach, we prepare the numerical example with the data extracted 

from one of the retail outlet [15]. The data contains the daily demand for milk in one 

month. In the next part, we extend the simulation research by applying larger  lead-time 

uncertainty. In order to show the numerical example of the performance of RNN con-

trollers, the fourth part contains the time responses of the perishable inventory control 

system. The fifth part of the simulation study is devoted to the analysis of testing error 

using different sizes of test sets in case of different lead-time perturbations. 

For simulation purposes, the learning set contains 180 different inventory states. The 

initial conditions of the state vector are generated using random numbers in the range: 

(0,2). Single inventory state represents a different level of initial stock level of product 

of different shelf-life. The general simulation parameters take the following values: the 

review period is one day, simulation horizon equals month (31 days), shelf-life l is 

fixed, adopted issuing policy: FIFO. The parameters of the main parts of the approach 

are listed in Table 2 (previous section).  

 

4.1 Lead-time influence on testing error 

In this subsection, the results of the testing process for the following nominal lead-times 

s0ϵ{2,3,4,5}, lead-time perturbation of one day and shelf-life of 9 days are presented. 

The size of the test set is 1000 different initial inventory states. The obtained results are 

listed in Table 3.  

Table 3. Cost function value and testing error for different lead-times.  

s0 (days) J Testing error (%) 

2 1.4686 1.69% 

3 1.3408  2.23% 

4 1.4584 1.98% 

5 2.4153 2.66% 

 

The results show that testing error is the smallest for s0=2 among considered cases and 

the biggest for the highest considered lead-time s0=5. Nevertheless, the testing error is 

not exceeded about 3% in all considered cases. The cost function value J takes the 

highest value for the highest considered nominal lead-time.  
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4.2 Lead-time perturbation influence on the learning process 

This subsection is devoted to the investigation of lead-time perturbation and its influ-

ence on the learning process.  In Table 4 the results of the learning process for the lead-

time perturbation bounds: δ ϵ {0,1,2,3}, the nominal lead-time value of 5 days and 

products with the shelf-life of 12 days are presented. The lowest value corresponds to 

the no perturbation scenario and the highest to the high lead time uncertainty scenario. 

The estimated learning time increase with the perturbation bound used for the controller 

tuning. Learning time was approximately in the range 50-100 minutes on computer with 

Ryzen 5950X CPU.  

Table 4. Cost function for worst-case scenario for different lead-time perturbation bounds. 

δ (days) J Cost increase  

0 0.8287 0 

1 1.2011 0.37 

2 1.7234 0.89 

3 2.4317 1.60 

In the analyzed case, a threefold increase in lead-time perturbation bound leads to about 

2 times higher costs in terms of holding space and lost sales. In the assumed scenario, 

the inventory system without uncertainty in the lead-time is able to generate about 31% 

less cost J  in comparison to the smallest assumed lead-time perturbation bound (δ=1).  

4.3 Robustness of proposed approach  

For the purpose of robustness analysis the simulation with different lead-time uncer-

tainty is performed. The simulation scenario is prepared as follows: the demand for 

milk product is extracted from the  retail outlet; the simulation scenario starts with a 

sufficient level of stock in the inventory – it means that inventory initial states are 

adopted to the lead-time in the analyzed case; the assumed expiration date equals 12 

days; the weights of the design RNN are optimized for different perturbation bounds δ 

ϵ{0,1,2,3} and the nominal lead-time of 5 days, whereas the simulation is conducted 

for the perturbated lead-times ranging from 1 to 9 days. In Figure 3, the surface of the 

cost function is presented. 
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Fig. 3. Cost function values for controllers optimized for different values of perturbation bound  

δ and simulated using different lead-time perturbations Δ. 

 

Figure 3 visualizes the cost function values of optimized robust neural controllers for 

the different variants of lead-time uncertainty. It can be seen that the smallest cost func-

tion is achieved for perturbations Δ smaller than 0. The most interesting situation is for 

the Δ>0. As it can be seen in Fig. 3 the controller, which does not include the uncer-

tainty during the learning process δ=0, obtains high cost function values for Δ>0. This 

is because the controller was not able to be prepared for unknown uncertainties and it 

causes a lot of shortages in the inventory. On the other hand, the most robust behaviour 

for the highest lead-time is achieved by the controller of perturbation bound δ=3. In this 

case, other controllers (δ<3) obtain worse control quality.  

Moreover, in order to analyze the effect of lead-time influence on the level of stock the 

surface with the stock level is also generated (see Fig. 4).  

 
Fig. 4. Sum of stock for controllers optimized for different values of perturbation bound  δ and 

simulated using different lead-time perturbations Δ. 
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It can be seen that for Δ≤0 the stock level is similar for all optimized controllers. The 

change starts to be visible for Δ>0 where the stock level decreases. It can be observed 

that for Δ=4 the following relationship is satisfied: the higher δ the more stock is stored 

in the inventory. It means that controller optimized using the highest perturbation bound 

(δ=3) is more accurate in determining a sufficient amount of stock to minimize short-

ages. 

4.4 Time responses of the obtained NNC controllers for long-lead-time 

scenario 

In this subsection, the time responses are investigated. The case with the high lead-time 

is selected (sΔ=8) and the same parameters of the simulation are assumed as in point 

4.3 with the only difference in the initial inventory state. In this subsection, we assumed 

zero initial inventory state, which means that inventory is completely empty at the be-

ginning of the simulation. To start with, the monthly demand is plotted in Fig. 5 and 

lost sales are illustrated in Fig.6.   

 
Fig. 5. Demand scenario for milk products. 

 
Fig. 6. Lost sales for controllers optimized using different perturbation bounds δ. 
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It is clearly visible that least lost sales are for δ=3. This observation implies that variable 

demand is satisfied with the highest level of service for δ=3 among considered control-

lers. It is important to highlight that the significant shortages characterize the non-ro-

bust controller (δ=0). The next time response is the order (Fig.7).  

 
Fig. 7. Orders for controllers optimized using different perturbation bounds δ. 

 

In Fig. 7, it can be seen that the controller tuned for the perturbation δ=3 calculates the 

orders that follows the changes in demand without oscillations and overshoots. The 

other controllers generate the highly oscillating order quantities which result in higher 

shortages which can be seen in Fig. 6.  

4.5 Test size influence on testing error 

The next section is focused on the analysis of investigating the test size influence on 

the testing error.  Fig.8  illustrates the obtained testing errors during the testing phase 

of RNN controllers. 

 

Fig. 8.  Learning error for different lead-time perturbation bounds and test set sizes.  
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In Figure 8 can be observed that testing error, for the highest perturbation bound for all 

test set sizes, is the smallest among the considered cases. On the contrary, the highest 

learning errors occur for the controller that controls the inventory system without con-

sidering any uncertainty. It can be noted that the testing error for all considered cases 

is in the range from 2.3% to 4.5%.  

5 Conclusions 

In brief, we developed a robust neural network controller to manage the perishable 

items in case of uncertain lead times. In order to optimize the developed model, we 

adopted the robust optimization approach based on Wald criterion. Simulation research 

was conducted to illustrate the proposed approach performance with the use of a real 

demand. Our numerical results demonstrate that controllers learned using greater un-

certainty bounds are more prone to outperform the controllers learned using smaller 

perturbation bounds  in case of high lead-time. It is evident that neglecting the uncertain 

nature of the lead-time has serious consequences. For example, for controllers which 

are learned using smaller perturbation bound, the inventory level dropped below the 

sufficient minimum of full demand satisfaction in case of high lead-time values. What 

is more, learning using an evolutionary algorithm in the case of a perishable inventory 

system with uncertainty provides testing error not greater than 3.8%. On the basis of 

conducted research it can be noted that the RNN controllers are able to order the proper 

amount of products in an exact time for a given uncertainty set. The order quantity 

calculated by the controllers is nonnegative and bounded which is of utmost importance 

in the case of practical implementation goals. Moreover, the stock level smoothly fol-

lows the reference demand value and do not cause any unnecessary overstocks. All 

these advantages are achieved in the environment of uncertain lead-time. Looking also 

at the limitations, our proposed approach can be extended in considering demand un-

certainty and lead-time uncertainty at the same time. It is one of the main topics for our 

further researches. 
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