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Abstract. Many real problems are defined in an uncertain environment
where different parameters such as processing times, setup times, release
dates or due dates are not known at the time of determining the solution.
As using deterministic approach very often provides solutions with poor
performance, several approaches have been developed to embrace the un-
certainty and the most of the methods are based on: stochastic modeling
using random variables, fuzzy modeling or bound form where values are
taken from a specific interval. In the paper we consider a single machine
scheduling problem with uncertain parameters modeled by random vari-
ables with normal distribution. We apply the sampling method which we
investigate as an extension to the tabu search algorithm. Sampling pro-
vides very promising results and it is also a very universal method which
can be easily adapted to many other optimization algorithms, not only
tabu search. Conducted computational experiments confirm that results
obtained by the proposed method are much more robust than the ones
obtained using the deterministic approach.

Keywords: single machine scheduling - uncertain parameters - stochas-
tic scheduling - normal distribution - tabu search - sampling method.

1 Introduction

Research on optimization problems for the last decades has been primarily fo-
cusing on deterministic models where we assume that problem parameters are
specific and well defined. Unfortunately in many production processes we can
observe different levels of uncertainty what has a direct impact on their smooth
execution. For instance in many businesses delivering goods with no delays has
a direct financial consequences. Unfortunately, it is not easy to meet this require-
ment as the transportation time depends on many external factors like weather
conditions, traffic jams, driver’s condition and many others. Moreover, solving
such problems effectively requires very often a thorough knowledge of the process
or production system.

Depending on the nature of the problem and the level of our knowledge about
the measured parameters, uncertainty can be modeled in different ways. For in-
stance, approximated values can be taken in case the variance is very small, we
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can use ranges of values or fuzzy representation in case we have limited under-
standing of the parameters’ variation, finally, we can leverage random variables
with specific probabilistic distributions and this approach we investigated in our
paper. In literature scheduling based on random variables with probabilistic dis-
tributions is recognized as stochastic scheduling. Over the recent decades many
different problems and their variants were investigated, during this time also
many good reviews have been introduced. Basics of stochastic scheduling one
can find in Pinedo [19] and more extensive reviews dedicated to methods solving
scheduling problems in stochastic models are presented in Cai et. al. [8], Dean
[10] and Vondrak [26].

There are different ways how randomness is considered and key ones are:
uncertain problem parameters and machine breakdowns. The single machine
scheduling problem where different problem parameters like processing times or
due dates are uncertain is also approached in different ways. One way is to de-
velop a scheduling policy. Rothkopf in [22] introduced WSEPT (weighted short-
est expected processing time, ordering jobs with nonincreasing ratio w;/E[p,])
rule proved to be optimal for single machine scheduling with identical release
dates in [23]. The approach is still being investigated and recently in [29] an op-
timal policy EWCT (the expected weighted completion time) for single-machine
scheduling with random resource arrival times has been introduced. Earlier Cai
in [7] showed that for single-machine scheduling with processing times modeled
by random variables with exponential distribution and cost functions and due
dates with any distribution, the WSEPT policy (weighted shortest expected pro-
cessing time first) is optimal. More one can find in [15], [13] or [24]. The another
way to solve the problem is to, instead of developing a scheduling policy, hire
metaheuristics like tabu tabu or simulated annealing. This approach was inves-
tigated in Bozejko et al. [1], [2], [3], [4] and Rajba et. al. [20] where effective
methods were proposed for single machine scheduling problem where parame-
ters are modelled with random variables with the normal distribution. In [1], [2]
and [20] additionally Erlang distribution was investigated and those papers cover
> w;U; and Y w;T; problem variants. The main goal of [3] and [4] was to intro-
duce techniques to shorten the computational time (i.e. elimination criteria and
random blocks) keeping the robustness of the determined solutions on a good
level. An interesting approach has been also presented in Urgo et. al. [25] where
a variant of stochastic single machine scheduling problem is considered with re-
lease times and processing times as uncertain parameters and solved using the
classic branch-and-bound method. The other dimension is to define the appro-
priate stochastic objective function (what is related to stochastic dominance, see
[12], [16], [19]). For the most of discussed research so far the goal is to minimize
the average (expected) value, the variance, or some combination of those. It is
worth to indicate that there is also another significant area of robust scheduling
where to goal is to minimize and control the worst-case scenario (see [9], [14],
[27] and [28]), however usually in those scenarios uncertainty is modelled by the
bounded form instead of the stochastic approach.
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Random machine breakdowns is considered in the literature mainly in the
following two variants: preemptive-resume mode where partially done work is
continued after repair (see [5], [18]) and preemptive-repeat mode where partially
done work is discarded and job needs to be started again (see [6], [11]). How-
ever, as in this paper we focus on uncertain parameters, we conclude machine
breakdowns with this short introduction.

In this paper we consider a single machine scheduling problem with due
dates in two variants where either job execution times or due dates are uncer-
tain and modeled by independent variables with the normal distribution. We
investigate the sampling method which is an extension to the tabu search al-
gorithm and offers a probabilistic approach of finding solutions. To the best of
author’s knowledge, this technique was introduced in [21] for the first time and
it wasn’t studied in the scheduling literature. In this paper we introduce the
following novel contribution:

— We apply the sampling method to the considered single machine scheduling
problem with uncertain processing times and due dates,

— We introduce 3 optimization rules which makes samples more tailored and
significantly decreases required samples’ sizes keeping the robustness on
a good level,

— We conduct an extensive experimental evaluation of the proposed method.

As verified in the computational experiments by applying the proposed method
we obtain much more robust solutions than the ones obtained in the classic
deterministic approach, moreover, the experiments also confirmed that applying
optimization rules significantly reduces the samples’ sizes.

The rest of the paper is structured as follows: in Section 2 we describe a classic
deterministic version of the problem, then in Section 3 we introduce a randomized
variant of the one. In Section 4 we present the method and optimization rules
what is the main contribution of the paper, and in Section 5 a summary of
computational experiments is described. Finally, in Section 6 conclusions and
future directions close the paper.

2 Deterministic scheduling problem

Let J = {1,2,...,n} be a set of jobs to be executed on a single machine with
conditions that (1) at any given moment a machine can execute exactly one job
and (2) all jobs must be executed without preemption. For each i € J we define
p; as a processing time, d; as a due date and w; as a cost for a delay.

Let IT be the set of all permutations of the set J. For each permutation
m € Il we define

Cr(i) = Y Pr(s)
j=1

as a completion time of a job (7).
We investigate the following ways of calculating cost function:
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— sum of weights for tardy jobs,
— the total weighted tardiness.

Therefore we introduce the delay indicator

U 0 for Chruy < drgiy,
@ = 1 for OTr(i) >d7r(i)~

and cost factor

T 0 for  Cray < drgiys
0 = Cﬂ.(i) — dﬁ(i) for Oﬂ.(i) > d,r(l)

Then, the cost function for the permutation 7 is either

Z Wa(i)Ur(iy- (1)
=1

or
n
Z Wr (i) L (i) (2)
=1

Finally, the goal is to find a permutation 7* € II which minimizes either

W(n*) = 7%12 (Z Wr (i) Un(i )>
or
W = ;Iél]I% (Z 'Ll)ﬂ.( )Tﬂ( ))

(depending on the considered variant)

3 Probabilistic model

In this section we introduce the randomization of the problem described in Sec-
tion 2. We investigate two variants: (a) uncertain processing times and (b) un-
certain due dates.

In order to simplify the further considerations we assume w.l.o.g. that at any
moment the considered solution is the natural permutation, i.e. 7 = (1,2,...,n).

3.1 Random processing times

Random processing times are represented by random variables with the normal
distribution p; ~ N(ps,c-p;)) (i € J, ¢ determine the disturbance level and
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will be defined later) while due dates d; and weights w; are deterministic. Then,
completion times C; are random variables

C~’i~N<p1+p2...+pi7c- p%—l——l—p?) (3)

Furthermore, the delay’s indicators are random variables

and the cost’s factors are random variables

- o< d.
7 — 0~ for C:Z < d;, 5)
C;—d; for C;>d;.

For each permutation m € II the cost in the random model is defined as a
random variable:

W(?T) = ZwiUi7 (6)

or

1wm:2pm. (7)

3.2 Random due dates

Random due dates are represented by random variables with the normal distri-
bution d; ~ N(d;,c-d;), i € J while processing times p; and weights w; are
deterministic. Delay’s indicators are random variables

(®)

o 0 dla Ci<d~ia
)1 dla O > d;

and the cost’s factors are random variables

d 1 ‘<~7ﬁ7
U_{o dla C; <d -

L Ci—di dla CZ>CZl

Cost functions are the same as for the variant with random processing times.

4 Sampling

We have introduced sampling for the first time in [21] for the flowshop problem.
In this paper we apply the same idea, but with additional optimizations and
tailored for the single machine scheduling problem.
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Let’s first recall that since permutations’ costs defined in (6) and (7) are
random variables, we need some way to be able to compare different solutions, so
in each tabu search algorithm’s iteration when we are testing different candidate
solutions from the neighbourhood, we are able to find the best one and improve
the current global best solution. The sampling method is a way how to make
this comparison and the main idea is as follows. R

Let us consider a problem instance {(p;, w;,d;)} (or {(p;,w;,d;)}, respec-
tively for uncertain due dates variant) and the examined candidate solution,
a permutation 7. As {p;} ({d;}, respectively) are defined as random variables
and we don’t know the actual values that may come, the main idea of sampling
is to generate samples of disturbed data based on {p;} ({d;}, respectively) and
simulate the potential different scenarios evaluating those disturbed candidate
solutions. More formally we can describe the method as follows.

Algorithm 1: Sampling overview

1: Generate [ vectors {(7¥)} = {(7%,...,7")} based on {f;} what gives
I deterministic instances {(BF, wi,d:)}, 3 € {1,...,n}, k€ {1,...,1}.

2: For each deterministic instance (BF,w;, d;) a cost is calculated based on the
candidate solution 7. By that we obtain a sample {W{",... , W/ }.

3: We calculate a mean T and a standard deviation s from the sample which are
used in the comparison criteria W by tabusearch.

The above listing is applicable for the random processing times variant. We can
easily obtain a version for the random due dates by generating and using samples
for d; instead of p;.

In the basic scheme we use the fixed size of a sample (parameter [) and we
investigate values dependent on the jobs’ number: 0.25n,0.5n, ..., 2n.

Let’s first specify the formula for criteria W. We investigated two main op-
tions: either only mean or some kind of combination of the mean and the stan-
dard deviation. During the analysis it turned out that the comparison criteria
efficiency depends on the considered problem variant and even though for the
most analyzed variants the best was W = T, for instance for the one the best
comparison criteria was W = 50 - T + s. However, as the differences were very
small, for the simplicity reasons we assumed everywhere

W =7.

Next, we wanted to learn something about the sample {W7, ..., W/ }. Unfor-
tunately it turned out that the distribution of the samples are not representing
the normal distribution (according to the Shapiro-Wilk test), so we calculated
how many different values are produced taking the large sample size (we took
10 - n).

Looking at Table 1 we can make a few observations. First, what is the most
significant, the standard deviation from the number of different values is very
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Table 1. Number of different values in samples obtained in Step 2 in Algorithm 1

w;U;, i w;Us;, d; w; 15, i w;Ty, d;
N Factor | Mean |StdDev| Mean |StdDev| Mean |StdDev| Mean |StdDev
0.05 1,9 1,0 4.4 2,3 36,8 2,1 37,0 1,6
0.10 26 | 14 80 | 25 | 370 | 21 | 381 | 1,1
o | 015 34 | 1,7 | 11,2 | 24 | 372 | 20 | 392 | 0,7
0.20 390 | 1,7 | 141 | 23 | 372 | 20 | 39,7 | 04
0.25 4,7 1,8 16,7 2,2 37,2 2,0 39,9 0,3
0.30 5,3 1,9 18,6 2,1 37,3 1,9 39,9 0,2
0.05 1,9 1,1 5,4 2,5 45,9 2,5 46,6 1,8
0.10 27 | 1,6 | 104 | 2.8 | 46,2 | 2,5 | 485 | 1,0
s | 015 35 | 1,8 | 148 | 2,7 | 46,3 | 25 | 495 | 05
0.20 12 | 20 | 184 | 25 | 464 | 24 | 498 | 03
0.25 4,9 2,0 21,3 2,3 46,5 2,4 49,9 0,3
0.30 56 | 2,1 | 23,7 | 22 | 466 | 2,3 | 49,9 | 0.2
0.05 3,6 2,6 13,0 4,8 90,7 4,4 92,5 3,3
0.10 58 | 43 | 21,3 | 40 | 915 | 44 | 975 | 1,6
100 0.15 7,4 4,6 27,9 3,3 92,0 4,5 99,5 0,6
0.20 9,0 5,0 33,5 2,9 92,2 4,6 99,8 0,4
0.25 99 | 4,7 | 384 | 2,6 | 923 | 4,6 | 998 | 04
0.30 11,5 4,7 42,3 2,4 92,6 4,5 99,9 0,3

small among all considered cases and it varies from below 1 to 5 (however ma-
jority of values are around 1-2). Second, the average value for a specific problem
variant (i.e. defined by the number of jobs, the random parameter and the cost
criteria) is also quite stable. It is interesting that the average value is around
number of jobs for the > w;T; criteria and it is much smaller for the > w;U;
criteria. Moreover, for that criteria it is still much smaller both for random pro-
cessing times and for random due dates.

‘We use those observations to define the first optimization rule to reduce the
size of samples keeping the robustness coefficient on a good level.

Optimization 1 Based on the number of different values in samples presented
in Table 1 we state that for the problem variant with the cost criteria Y w;T;,
the size of the sample S is enough and there is no need to generate new samples
when |S| = n.

Unfortunately, based on the initial evaluation, for the cost variant Y w;U; the
values are to small define the similar rule that brings any positive contribution.

Another approach for generating not too big samples is looking into the
confidence intervals for average. Along with generating successive values we can
analyze how confidence intervals change for sequence of samples. As we don’t
know the sample W7, ..., W/ distribution we apply the following variant of the

theory
s

T — fo—Fr
o1

S
<MLKT+ pha—F7

Vi
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where [ is a sample size (at least 30), T is the sample mean, s is the sample
standard deviation and p, is the value of random variable N(0,1) under the

condition:
«

D(pta) :1_5

what, assuming the standard significance level a = 5%, provides o, = 1, 96.
Now we are ready to introduce the second optimization rule.

Optimization 2 Let S1,S5s,...,S; (k > n/2) be a sequence of samples where
S; = Si—1 U {new element} and CI,, Cl,..., CI} be the sequence of the confi-
dence intervals obtained from Sy, Ss,.... Let len(CI) denote the length of the
confidence interval CI. We state that the size of the sample |S| = k is enough
and there is no need to generate new samples when the lengths of the last n/2
confidence intervals are more less the same, i.e.:

Z |len(CL) — len(CL—1)] < 3

i=k,k—1,....k—n/2

Of course the values n/2 and 3 are arbitrary and they are based on some initial
evaluation of different values.

Making an initial evaluation of confidence intervals for average we observed
that the later iteration is, the smaller confidence intervals are. This observation
triggered to introduce one more optimization rule which is very simple, but quite
strong and by default it reduces the total sum of samples’ sizes by half.

Optimization 3 Let ¢ be the iteration number in the tabu search algorithm
execution and let’s assume tabu search is executing n iterations. Then in the i-th
iteration the sample size is determined by the following formula:

IS|=Mn—-i+1)-2;

Obviously the above formula can be easily adapted for any number of the tabu
search iterations.
All the optimization rules are applied into the tabu search as follows:

— Optimization 3 is defining the upper bound for the sample size and provides
the guarantee on the overall execution time.

— If the any of the rules defined by Optimization 1 and Optimization 2 is
fulfilled, we stop generating more items in the sample before Optimization 3
rule holds. We can’t estimate at which stage those rules are fulfilled as they
are depended on the actual samples’ values. However, the initial investigation
shows that applying those makes a significant reduce in the total sum of
samples’ sizes.

5 Robustness of the solutions

In this section we present the results of the robustness property comparison be-
tween the tabu search method with and without the sampling method applied.
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All the tests are executed using a modified version of tabu search method de-
scribed in [1]. The algorithm has been configured with the following parameters:

— 7 =(1,2,...,n) is an initial permutation,
— n is the length of tabu list and
— n is the number of algorithm iterations,

where n is the tasks number.

Both methods have been tested on instances from OR-Library ([17]) where
there are 125 examples for n = 40, 50 and 100 (in total 375 examples). For each
example and each parameter ¢ = 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 (expressing
6 levels of data disturbance) 100 randomly disturbed instances were generated
according to the normal distribution defined in Section 3 (in total 600 disturbed
instances per example). The full description of the method for disturbed data
generation can be found in [3].

All the presented results in this section are calculated as the relative coeffi-
cient according to the following formula:

W wr

)
W*

-100% (10)
which expresses by what percentage the investigated solution W is worse than
the reference (best known) solution W*. Details of calculating robustness of the
investigated methods can also be found in [3].

A classic version of the algorithm we denote by AD, the one with applied
sampling with the fixed sample size by AP’ and the one with applied sampling
with the sample sized based on optimization rules by APC.

5.1 Results

In Tables 2 and 3 we present a complete summary of results for cost criteria
> w;U; and in Table 4 and 5 we present a complete summary of results for cost
criteria _ w;T;. Values from columns AD, APF and AP in all tables represent
a relative distance between solutions established by a respective algorithm and
the best known solution. The distance is based on (10) and it is the average
of all solutions calculated for the disturbed data on a respective disturbance
level expressed by the parameter ¢. For AP values are broken down for differ-
ent sample sizes (which is based on number of jobs) and we can observe how
those values are changing depending on the sample size. For the cost criteria
> w;U; the highlighted column (0.75n) represents in the author’s opinion the
best choice when it comes to balance between the obtained robustness coefli-
cient value and the sample size. The version of the algorithm with optimizations
applied is presented only for random p; and cost criteria Y w;T; as only for this
variant optimizations brought the expected improvements.

Looking at the results we can quickly conclude that by applying sampling
method we obtain significantly more robust solutions than in the deterministic
approach. Column IF (2n) represents how much relatively presented approach
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is better and actually the level of improvement depends on the problem variant.
For random p; improvements are enormous and they start from ca. 400% and
they reaches values over 7000% for the cost criteria > w;U; and they start from
ca. 900% and reaches over 32000% for the cost criteria _ w;T;. For random d;
those values are smaller, but still showing great improvements.

We can also notice that by applying optimizations 1, 2 and 3 we obtain
a better ratio between the sample size and solution robustness. As in this ap-
proach there is no longer a fixed sample size, the actual sample size has been
calculated during performing the tests and on average the sample size was 0, 78n
with very small deviations. Comparing values presented in the column AP to
similar variant in the AP version (0,75n) we observe that for all cases either
values are similar or version with optimizations provides much better robustness
keeping more less the same samples’ size on average.

In general results follow the expectations, i.e. the bigger disturbance factor,
the worse robustness coeflicient, the bigger sample size, the better robust co-
efficient (to some degree), however, there are some exceptions from those rules
what we plan to investigate further in the future research.

Table 2. Results for random p; and Y w;U; cost criteria. Values are the relative errors
between algorithm being compared to the best known solution

N |Factor| AD AP” IF (2n)
0,25n| 0,5n [0,75n| 1n [1,25n| 1,5n [1,75n| 2n
0,05 58,0 28,1] 24,7 13,2 13,4] 12,2] 12,1 11,8] 12,0 382%
0,1 172,7| 68,2| 33,5| 22,6| 20,6| 18,7| 17,6 16,6 16,9| 920%
40 0,15 505,0|281,3|128,9| 51,6| 48,0 52,7| 50,3| 51,9| 52,2| 867%
0,2 827,7(320,0(228,0| 93,8| 86,8 78,8| 79,0| 69,0| 71,6| 1055%
0,25 |1213,6]781,8|197,4|119,0]153,9]133,1| 132] 98,7| 97,2 1148%
0,3 |1299,4|578,4|473,8|156,8 (162,2|163,2|145,7|164,8|110,3| 1078%
0,05 70,7| 21,2 17,4| 16,5| 15,7| 15,4| 14,3| 13,4| 12,6| 461%
0,1 610,0( 82,3(/105,3| 76,2| 56,1| 54,8 39| 39,8| 29,0 2002%
50 0,15 553,7|171,9(100,1| 81,4| 62,7| 42,9| 40,8| 34,9| 21,4| 2484%
0,2 |2064,7|529,8(390,9|181,0(192,4|121,7| 96,6| 104| 97,8| 2011%
0,25 |2248,8]394,3|271,0|200,3]126,3]117,0]114,0] 92,3[114,2| 1868%
0,3 [1752,5|315,2/202,4|111,4]110,3]108,8] 59,2] 81,1 53,2 3195%
0,05 546,4 | 186,2|160,8 | 110,8 | 150,1 | 151,9|100,2| 58,8| 55,6| 882%
0,1 717,1| 7T4,4| 44,1| 33,5| 37,0| 12,6| 38,9| 22,3| 14,2| 4932%
100 0,15 |1585,8|252,0| 79,7| 58,4| 58,5| 57,3| 82,7| 68,4| 42,3| 3648%
0,2 |1670,8|247,6(102,9|120,5| 54,7| 56,5| 48,8| 51,4| 38,9| 4199%
0,25 |1551,4|165,0| 98,2 70,6| 69,4| 51,2| 40,3| 38,2| 36,6| 4133%
0,3 |2199,2|186,2| 74,5| 48,9 48,5| 37,2| 31,8| 33,9| 29,4| 7377%

Finally, in Table 6 we present aggregated on all disturbance levels the per-
centage for how many instances AP gives not worse solution than AD assuming
that the samples size S=2n. We can quickly see that for all problem variants
(except the one for random p; and cost criteria > w;T;) all results are almost
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Table 3. Results for random d; and > w;U; cost criteria. Values are the relative errors
between algorithm being compared to the best known solution

N |Factor| AD APT IF (2n)
0,25n | 0,5n | 0,75n In 1,25n | 1,5n | 1,75n 2n
0,05 |1191,6| 451,2| 297,0| 197,2| 200,6| 200,8| 191,1| 197,3| 207,2| 475%
0,1 |2891,4|1062,7| 881,5| 709,1| 785,1| 734,1| 645,6| 684,4| 653,9| 342%
40 0,15 |4460,0|1757,4| 1193|1152,6(1128,3| 1109|1132,8|1171,1|1095,6| 307%
0,2 |2953,8|1480,0(1209,8|1073,5|1034,5|1055,4|1045,7|1016,3 |1012,6 191%
0,25 |2457,6|1304,8(1153,3|1129,5|1100,4|1100,1|1111,4|1103,4|1087,4 126%
0,3 |1391,3| 874,9| 777,9| 732,8| 731,9| 718,8| 716,7| 714,8| 712,3 95%
0,05 |3045,5| 873,6| 586,3| 512,9| 487,1| 566,6| 563,6| 494,7| 5832 422%
0,1 |1128,6| 472,6| 370,5| 361,4| 323,7| 317,9| 338,6| 321,5| 323,2 249
50 0,15 |3387,1|1210,3|1112,1|1067,2|1000,9| 955,5| 928,4| 918,9| 963,1| 251%
0,2 |2217,6|1171,6| 943,7| 943,0| 908,5| 892,4| 876,5| 858,3| 877,1 152%
0,25 |2462,2|1501,2|1328,2|1247,6|1225,1| 1195|1178,3|1181,6|1190,2 106%
0,3 |1758,1|1171,4|1036,6|1002,8| 980,0| 989,8| 965,6| 977,5| 980,5 79%
0,05 |3898,6| 640,9| 404,4| 373,9| 340,4| 261,0| 256,0| 308,5| 261,6| 1390%
0,1 |1671,4| 464,3 424| 379,8| 369,8| 355,1| 351,0| 338,3| 337,0| 395%
100 0,15 |1537,7| 576,4| 530,6| 495,8| 477,5| 485,9| 497,1| 504,7| 473,5| 224%
0,2 |1445,3| 729,8| 688,3| 676,7| 663,3| 670,3| 641,9| 644,7| 641,0 125%
0,25 |1180,5| 735,7| 700,8| 674,2| 664,6| 659,2| 650,5| 652,4| 640,3 84%
0,3 784,6| 548,8| 525,5| 506,9| 503,2| 503,7| 499,7| 497,0| 494,1 58%

Table 4. Results for random p; and > w;T; cost criteria. Values are the relative errors
between algorithm being compared to the best known solution

N |Factor| AD AP? AP” IF (2n)
0,78n | 0,25n | 0,5n | 0,75n In 1,25n | 1,5n |1,75n| 2n
0,05 452,8 28,3 58,5 57,1 37,4 28,1 22,2 23,2 23,9| 21,7| 1982%
0,1 851 31,3| 250,6 163 133 51,2 121,8 42,2 37,5| 35,2 2320%
40 0,15 1532,6 49,2 571| 226,8 94,9 101,1 70,9 79,3| 49,9| 52,2| 2836%
0,2 2012 98,3 762| 311,2| 126,1| 108,8 97,6 | 105,2| 86,3| 68,5| 2836%
0,25 4693,6 | 900,9|5013,9 (2073,4|1793,9|1737,6 | 1662,8 | 1628,9 | 456,4 | 458,4 923%
0,3 5238,1|1014,7|6297,6 | 1440,9 | 1065,3 | 1044,7 983 | 932,2280,5[279,8| 1772%
0,05 373,1 10,4 49,6 45,1 21 10 9,7 9,9 9,8 9,5| 3831%
0,1 990,6 17,7| 123,2 63,7 32,4 21,1 19,4 16,9 16,6| 15,8| 6186%
50 0,15 2666 | 192,9| 501,2| 368,9| 237,7| 101,3| 100,4 95,3(100,7| 98,1| 2617%
0,2 4524 87,5|1068,9| 484,4| 1484 92,3 89,6 83,1 74,9 73,9 6018
0,25 |12048,7| 528,2[1921,3]1334,8| 855,2| 553,5| 498| 476,7]480,6| 382| 3053%
0,3 7585,5| 115,8(1099,6 | 633,6| 283,2| 113,5| 154,5| 119,1|117,7| 44,5|16931%
0,05 830,9 6,9 19 7,5 7,1 7,7 7,5 7,5 6,9 7,3111345%
0,1 2452,8 13,7 39,5 13,3 12 8,9 10,8 5,3 8,8 6,4|37991%
100 0,15 4095 62,1 222,2 56 63,3 70,6 46,2 31,7| 40,1| 42,2| 9613%
0,2 |12436,8 78,8| 336,3 78,3| 144,9 67,3 59,6 64,9 42,3| 38,5[32173%
0,25 | 9104,2 114| 305,4] 161,2 135| 80,5| 85,4| 82,6| 75,6] 59,415214%
0,3 [11229,8 93,3| 501,7| 167,2| 145,7| 129,3| 123,6| 113,3| 86,5| 87,3|12756%
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Table 5. Results for random d; and > w;T; cost criteria. Values are the relative errors
between algorithm being compared to the best known solution (all values for AD and
APT should be multiplied by 10%)

N | Factor | AD (-10%) APT (10%) IF (2n)
0,25n | 0,5n | 0,75n 1In 1,25n | 1,5n | 1,75n 2n
0,05 10,5 54| 4,2 1,8 1,9 1,8 1,8 1,7 15| 595%
0,1 26,4 11| 75| 70| 71| 65| 66| 64| 62| 325%
40 | 015 35,2| 18,8| 15,1| 14,7 14| 13,6| 13,2 13,5| 13,2] 165%
0,2 56,2| 32,6| 26,4| 255| 24,6| 24,1| 24,3] 23,7 23,1| 142%
0,25 51,9 32| 28,5| 27,8| 27.8| 26,8 27,1 27| 26,4| 96%
0.3 21,1| 15,5] 14,2| 13,3 13,3 13] 13,1] 12,9 13| 62%
0,05 10,3 1,9 1,4 1,1 0,9 1,0 0,8 0,8 0,8 1164%
0,1 68,2 23,9 18 15,6 16,6 14,7 15,3 15,8 14,4 372%
so | _0:15 55.1| 27,7 22 21| 19,8| 19,8| 19,5] 19,6| 19,8| 178%
0,2 103,6 54| 46,3| 42,8| 42,6| 42,3 43| 42,3| 42,1| 146%
0,25 221,2| 136,3|121,4] 116,3| 116,4| 115,8| 114,1| 114,2| 114,7| 92%
0,3 25.8| 16,5| 14,4 14| 13,7 13,8 13,6] 13,5] 13,6] 89%
0,05 26| 34| 28| 24| 21| 21 2] 1,9] 18] 1319%
0,1 97.4| 28,6| 24,2| 22,6 21,8 21,8] 21,3] 208| 20,1| 384%
100 0:15 576,1| 283,7|270,6| 254,1| 246,2| 244,9| 241,7| 242.4| 241,1| 138%
0,2 2345,7| 1506,1| 1402 ] 1332,5 | 1301,1 | 1308,8 | 1302,7 | 1296,5 | 1288,4|  82%
0,25 657,5| 454,3|425,6| 400,8| 395,2| 392,5| 394,9| 395,1| 390,8| 68%
0,3 37,7 29.6] 27,5 26.2| 258| 259| 256| 255| 255| 47%

95% and higher and the bigger n is, the better percentage we get. Moreover, for
random d; and cost criteria Y w;U; all values are very close or even equal to
100%. For random p; and cost criteria > w;T;, even if a little smaller, we also
get very strong result where all results are above 74%. This another perspective
also shows predominance of the proposed sampling method.

Table 6. The percentage for how many instances AP gives not worse solution than
AD assuming S=2n

pi d;
Swil; | wiTi | wiUs | > wiTs
40 94,7% 77,9% 98,8% 94,9%
50 96,8% 74,3% 99,2% 97, 7%
100 99,9% 80,0% | 100,0% 99,9%

n

6 Conclusions

In this paper we proposed the sampling method with a set of optimizations which
can be applied to tabu search and other similar methods in order to improve
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the robustness of solutions calculated in an uncertain environment modeled by
random variables with the normal distribution. Based on the performed com-
putational experiments we can conclude that the proposed method provides
substantially more robust solutions than the ones obtained by the determin-
istic approach and the proposed optimization rules reduces the samples’ sizes
generated during the algorithm’s execution

As there are several ways how the described method can be further investi-
gated, we can see the following ways for continuation. Obviously, as there are
several results which don’t follow the expected trends, we plan to investigate
the topic further and understand better the nature of those exceptions and by
that, hopefully, improve the method and make it more tailored where applicable.
There is also a question how strong is that method comparing to other methods
solving the same problem based on stochastic and fuzzy description. The other
area of investigation might be also to verify how much the input data distribu-
tion is important in the final results as the obtained samples doesn’t reflect the
distribution of the input data. Please note that this might be both advantage
and disadvantage depending on the properties we would like to obtain in the
end. Finally, this method is very universal and can be applied to many other
types of optimization problems, so we plan also to follow this direction.
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