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Abstract. The design of an individual-level computational model re-
quires modelers to deal with uncertainty by making assumptions on
causal mechanisms (when they are insufficiently characterized in a prob-
lem domain) or feature values (when available data does not cover all
features that need to be initialized in the model). The simplifications and
judgments that modelers make to construct a model are not commonly
reported or rely on evasive justifications such as ‘for the sake of simplic-
ity’, which adds another layer of uncertainty. In this paper, we present
the first framework to transparently and systematically investigate which
factors should be included in a model, where assumptions will be needed,
and what level of uncertainty will be produced. We demonstrate that it
is computationally prohibitive (i.e. NP-Hard) to create a model that sup-
ports a set of interventions while minimizing uncertainty. Since heuristics
are necessary, we formally specify and evaluate two common strategies
that emphasize different aspects of a model, such as building the ‘sim-
plest’ model in number of rules or actively avoiding uncertainty.

Keywords: Agent-Based Model - Causal Map - Graph Algorithms -
Information Fusion.

1 Introduction

The design of an individual-level model (e.g., Agent-Based Model) is a common
activity in computational science. In computational social science, such mod-
els can serve to explain social phenomena or safely test interventions within an
artificial society before selecting the most promising ones for real-world pilot
testing [13,14, 7]. In an individual-level model, the simulated entities have their
own features (e.g., age, gender, beliefs and values) which need to be initialized at
the start of the simulation (i.e. given a baseline value). As the simulation unfolds,
the entities’ behaviors and some features will be updated based on a set of rules

* Alexander J. Freund thanks the Department of Computer Science & Software En-
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Fig. 1. A systems map (nodes and directed edges) of a problem space can be used to
identify what salient factors and rules will go into a model based on available data and
a systematic handling of uncertainties.

that can take into account the entity’s features as well as the features of simu-
lated peers or the environment. By specifying the rules, a modeler expresses how
to build reactive entities that either continue to engage in an existing pattern
of behavior or adopt a new one by reacting to socio-environmental stimuli. The
recommended guidance is that a “model should be embedded in existing theo-
ries and make use of whatever data are available. [Its] assumptions need to be
clearly articulated, supported by the existing theories and justified by whatever
information is available.” [1]

In contrast to the next steps which are more standardized (e.g., implemen-
tation in an object-oriented language, verification and validation) [11, 3, 10], the
design of a model and the extent to which it should use information or theories
is particularly subject to ad-hoc practices, hence to variations across modeling
teams. To illustrate these variations, consider Figure 1 which exemplifies the
problem space (i.e., set of relevant factors and interrelationships) in the case of
food-related behaviors. For a model to be ‘fit for purpose’ (i.e. adequate) [34],
the rules should connect the interventions required by model users to observable
model outcomes. In this situation, two teams could produce and justify very dif-
ferent models. One team with access to dataset B could create model 1 (Fig 1,
red highlights), which focuses on exercise and also touches on depression, body
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image, and self-esteem. This model will require making 3 assumptions: one to
compensate for the lack of baseline data to initialize the entities’ depression level,
and two for unknown rules relating public messaging to exercise, or exercise to
physical health. Another team with access to dataset A could create model 2
(Fig 1, green highlights) which is more focused on eating and also requires three
assumptions. A team with access to both datasets A and B could further reduce
the number of assumptions necessary, as they could pass on representing dieting
or the link from self-esteem to mental health while keeping the model fit for pur-
pose. The design of an individual-based model is thus heavily impacted by how
a team handles parameter uncertainty either in unknown causal mechanisms or
in unknown feature values. However, the “different types of simplifications and
scientific judgments that have to be made” [2] are not commonly reported, in
part since they are not required by standardized documentations [16] (e.g., ODD,
ODD+D). As essential aspects of model building are shaped by important yet
unknown decisions, we face the additional problem of structural uncertainty [2].

Although the need to lower structural uncertainty in model building has
long been established and mentioned in methodological guidance [35], this task
has been hampered by the lack of a clear picture on the problem space (i.e.
the map shown in Figure 1). In other words, it’s simple to state that ‘mod-
elers should explain how they systematically navigate the uncertainties in the
problem space based on available data and assumptions’, but it’s difficult for
modelers to follow a systematic method to handle a problem space that has not
been precisely mapped. Indeed, the creation of a comprehensive map of a prob-
lem space! (known as a ‘systems map’) is often beyond the scope of creating
one model, which usually only involves a brief literature review [1] and/or con-
sulting subject matter experts. However, the growth of Participatory Modeling
(PM) studies using techniques such as Fuzzy Cognitive Mapping or Causal Map-
ping [29, 36] has resulted in an abundance of systems maps across topic areas,
which can thus be used by modelers to create a model operating within any sub-
set of the map. To appreciate the coverage of systems maps, consider examples
from health [23] such as the Foresight Obesity Map [19] (over 100 factors and 300
links) or our map on mental and physical well-being in relation to body weight [5]
(269 links). Mid-sized maps are even more common, and may remain sufficient
for many modeling applications, such as health technology adoption [24] (52 fac-
tors and 105 connections) or radiotherapy [27] (66 links). A plethora of maps
has also been developed to study ecology and sustainability [20,8, 15] or social
challenges [18]. By clearly summarizing the salient constructs within the problem
space, such maps present an opportunity to shift from an ad-hoc model build-
ing approach to a systematic and transparent one, thus decreasing structural
uncertainty. Specifically, the use of a map and accompanying datasets allows to
systematically answer three essential interrelated questions for model building:

! A structure of the problem space may also be called ‘domain model’ [33] or ‘con-
ceptual model’. To avoid confusion on the multiple uses of ‘model’, we reserve this
term for the simulation model, that is, the operational model that was obtained
after making design decisions within the problem space.
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— Which factors should we include?
— Where in the problem space is it necessary to make assumptions?
— What is the resulting uncertainty of the model?

In this paper, we propose a framework to express the task of creating a model
as a matter of navigating a systems maps given a set of datasets. Using this
framework, the strategies used by modelers to answer the three questions above
are made both transparent and systematic using graph algorithms. Through this
framework, we note that creating the perfect model is an NP-Hard problem,
hence there is no perfect strategy to automatically generate a model: a heuristic
needs to be chosen by modelers based on measures that they explicitly wish to
favor. Our contributions are as follows:

(1) We present the first mathematical framework to express model design choices
based on data availability and their effects on uncertainty.

(2) We explain why a perfect model cannot be automatically created (NP-Hard
problem), hence emphasizing the need for heuristics.

(3) We demonstrate how common heuristics used by modelers can be formulated
in this framework, using a guiding example from a model of suicide.

The remainder of this paper is organized as follows. In section 3, we introduce
our framework formally and exemplify its elements using a model for suicide
prevention. In section 4, we explain why the model creation problem is NP-
Hard and demonstrate the effects of common heuristics. Finally, we discuss the
potential of shifting the process of model building from an ad-hoc unspecified
approach to the use of transparent heuristics within a systems map.

2 Framework

Intuitively, modelers have access to a systems map describing the problem space
as well as at least one dataset. For the model to be adequate, end users need
to see the effects of simulated interventions, which requires each intervention
to eventually impact at least one observable outcome through a chain of rules.
The task of creating a model thus requires maintaining paths from interventions
to observable outcomes through the problem space. Modelers use a strategy re-
garding which paths to take, in part based on data. Paths may travel through
nodes for which modelers do not have data, thus they would need to make as-
sumptions about the simulated entities’ feature values for these nodes. Paths will
also go through edges, which represent causal mechanisms that would be turned
into simulation rules. Some of these edges may be intuitively understood (e.g.,
‘more trauma leads to more suicide ideation’) but not sufficiently characterized
to write model rules, thus leading to additional assumptions (e.g., every unit of
trauma leads to an increase p in suicide ideation). A modeling strategy is thus
an algorithm that identifies a subset of a systems map based on available data
and makes assumptions to address unknown nodes and edges.

The main elements of the framework are listed in Table 1 and will now be
explained along with their formal notation. The problem space is represented by
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Table 1. Main elements of the framework

Notation |Meaning
G = (V, E) |Problem space represented as a map G, consisting of labeled nodes V
and directed connections E

1 Interventions (or ‘inputs’) needed by model users

O Observations (or ‘outputs’) that model users require to quantify the ef-
fects of their interventions

w(e) Uncertainty value of a causal connection in the problem space

D Set of all data sources available to modelers

Sources(v) |Set of data sources that include the node v; in other words, data sources
that modelers can use to initialize v

S A model design strategy. Given the map G and data sources D, it specifies
which subset of the map to use in a model, which data source will be
involved, and what level of uncertainty will arise. For a model to be
adequate, a valid strategy must ensure that each intervention from I has
an observable effect in O.

a directed, labelled, weighted causal graph G = (V,E). The nodes V represent
factors in the problem space and potential candidates for the entities’ features,
such as age, depression, or suicide ideation. To characterize the task of model
building, we need to identify nodes that play particular roles. A subset of the
nodes I C V represents the intervention nodes (e.g., public health campaigns,
economic interventions), also known as inputs. Similarly, the subset O C V repre-
sents the outcome nodes (e.g., number of suicide attempts, prevalence of suicide
ideation), also known as outputs. For a model to be viable, the interventions of
interest need to eventually affect the outcomes; otherwise, the model does not
offer support to examine the consequence of the intervention. For example, the
evaluation of a suicide prevention package may measure the impact of economic
interventions through a reduction in suicide attempts.

The edges E stand for causal connections and have an associated value (i.e.,
edge weight) denoted w(e) — R+,e € E. This value denotes the uncertainty
associated with the edge. We encode the value as a positive real number rather
than a boolean because systems maps may provide fine grained information
on the amount of uncertainty, which can thus be expressed without needing to
amend our framework. For example, Fuzzy Cognitive Maps can specify uncer-
tainty [17] by measuring the extent to which there is disagreement about the
causal strength of an edge (via entropy) among participants [12] or by checking
in a corpus whether there is enough supporting evidence for each proposed con-
nection [28,22]. In the case of Fuzzy Grey Cognitive Maps, each edge has a Grey
uncertainty [26]. In a coarse categorization, such as by asking subject-matter
experts whether a factor impacts another [25], uncertainty would either be 1
(present; maximal) or 0 (absent; minimal).

Information on causal mechanisms is held at the level of the systems map
via w(e) because it represents a fact about the system, independently of any
data source selected by modelers. This is reflective of the fact that a systems
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map serves as a synthesis of the evidence base [19, 5, 24, 27]. For example, a map
may stipulate that abusing or neglecting children has an impact on their risk for
suicidal ideation, or that a suicide attempt can lead to death. Data sources may
help to understand how these general mechanisms work in a specific population,
but the mechanisms exist irrespective of a population. In contrast, information
on the entities’ features depend on the data sources used, thus allowing to capture
how traits are expressed in specific populations. The collection of data sources
available to modelers is denoted by D = {Dy,---, D, }. Each data source may
hold information on some of the nodes. We denote the set of data sources for
a node v € V by Sources(v). When Sources(v) = ), modelers have no data
regarding this specific node hence its uncertainty is maximal and its inclusion in
a model would come at the cost of making an assumption.

Modelers can employ one of several strategies S to design a model. As shown
in the next section, examples may include finding the simplest set of rules from
each intervention to an outcome, or finding rules that avoid uncertainty whenever
possible. A strategy S € S is thus a function:

S (G, D) —(@=(VCV,ECE), DCD , R )
—— .
given map and datasets selects a map subset dataset used uncertainty cost

In line with the earlier explanations in this section, a strategy is valid if and
only if there is a path from every intervention node to at least one observable
node. Formally, this condition is enforced by checking the following:

S isvalid < Vie I,30 € O s.t. (i,v1),...,(vp,0) € E

A core aim for modelers is to design a valid strategy while minimizing the
uncertainty cost. The design of a model can thus be operationalized through this
framework as a discrete optimization problem in a graph given a set of datasets.

3 The necessity and design of heuristics

3.1 The impossible quest for perfection in model design

Intuitively, an ideal model design is one that satisfies all needs of the end users
while making the least number of assumptions. Formally, that would be an op-
timal strategy S* € S such that S* is valid and its associated uncertainty cost is
minimal among all valid strategies. However, finding the best strategy may not
be feasible in practice as shown in the theorem below.

Theorem 1. Identifying the best strategy S* is an NP-Hard problem.

Proof. To compute the optimal strategy S*, we are given intervention and out-
come nodes. The aim is to select nodes and edges in between (i.e., the ‘inner
part’ of the network) such that the sum of selected nodes’ and edges’ weights is
minimal, while maintaining connectivity. Minimizing this inner cost while pro-
viding connectivity is known as the Minimum Spanning Tree with Inner nodes
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cost problem (MSTI). The MSTI problem is NP-Hard as a special case of the
Connected Dominated Set problem [9, 21], hence our problem is also NP-Hard.

Alternatively, our problem can be related to the node weighted Steiner tree
in which ‘terminals’ must be connected and the cost function is the sum of
the nodes’ weights selected to provide this connectivity. Considering the special
case in which there is a single outcome node and multiple intervention nodes,
then they collectively form the ‘terminals’ used in a node weighted Steiner tree.
Further consider that there is no uncertainty on any edge, hence leaving only
the uncertainty on the nodes. Then, the special case is equivalent to minimizing
a node weighted Steiner tree, which is an NP-Hard problem [4].

3.2 Imperfect yet practical: two common model heuristics

The previous section established that building model that is fit-for-purpose and
minimizes uncertainty is an NP-Hard problem. However, modelers routinely
build models, which implies that they use heuristics. In this section, we show
how two such heuristics can be expressed in our framework, thus making the
model building process more transparent and systematic. As example for both
heuristics is provided in Figure 2.

One strategy employed by modelers is to ‘Keep It Simple Stupid’ (KISS)
in which “one only tries a more complex model if simpler ones turn out to
be inadequate” [6]. In other words, the model design is justified by ‘the sake
of simplicity’. Since each intervention must be measured via an observation, a
translation of KISS into a process would be to find the simplest way of connecting
each intervention to one observation (possibly the same). When that strategy is
expressed algorithmically, it is equivalent to using the shortest path from each
intervention to one observation. Algorithm 1 formalizes this strategy by using a
Breadth-First Search to generate each shortest path. We make two observations:

(1) Focusing on the shortest number of rules will not take the locations of un-
knowns into consideration. A slightly more complex model in number of rules
may have gone through a path better supported by data, thus producing a
model that needs fewer assumptions.

(2) Independently finding a path for each intervention can produce a model that
is simple for each intervention, but overall much more complex than strictly
necessary. For instance, taking a short detour for one intervention may have
allowed it to share the rest of the journey toward an observation using the
path of another intervention. Sharing paths or finding ‘synergies’ may thus
help to keep the whole model simpler and potentially lower its uncertainty.

A second approach captures the preference of modelers who actively avoid
creating poorly understood rules. Their preference is not to keep the model
‘simple’: rather, they seek a more robust model in which rules can be backed
by evidence as much as possible. From an algorithmic standpoint, this consists
of generating paths from every intervention node to the observation nodes and
selecting the one with the least overall uncertainty. This selected path will thus
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use a sequence of factors with well-understood relationships to lead from an
intervention node to an observation node.

Algorithm 1: Generate all shortest paths using Breadth-First Search

Input: List of edges in causal map, List of intervention nodes, List of
observation nodes
1 paths = {0}, finalPaths =} // create empty list of lists and a
map

2 foreach intervention do

s | paths < paths U{{intervention}}

4 while Jintervention ¢ finalPaths // continue until we have a path

for each intervention
5 do
newPaths = {0} // for each current path, look for next
steps

7 foreach path iy, ...,1, € paths do
targets < {t|(in,t) € edges}

9 foreach target € targets // for each possible next step,
save the potential path

10 do

11 ‘ newPaths < path U target

12 foreach path i1, ...,1, € newPaths do

13 if i1 ¢ finalPaths // ignore path if we already have a
finalPath for its root

14 then

15 if ¢,, € observations // if the path is complete, save

to finalPaths

16 then

17 | finalPaths(i;) < path

18 else

19 paths < paths U path // otherwise keep path for

next iteration

This strategy may lead to long and awkward tangents. For example, instead
of creating few rules with limited empirical or theoretical backing (e.g., after-
school programs reduce school problems thus reducing suicide ideation), this
strategy may result in creating many rules: after-school programs reduce school
problems thus reducing parental frustration, which means parents may be less
likely to cope with frustration through substance use, hence children are less
exposed to unhealthy coping strategies, thus they can deal better with their
own issues and overall are less likely to engage in suicidal thoughts. Each of
these rules may be backed by stronger evidence, but the collective chain of
rules produces a meandering model that can appear less plausible overall. As
modelers may avoid both arbitrarily long chains of rules and models whose rules
lack evidence, a strategy would need to discourage both uncertainty and long
paths. Algorithm 2 implements this approach by assigning a unit cost of 1 to all
known edges and a penalty value to unknown edges.
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Algorithm 2: Generate all minimal paths using Dijkstra’s algorithm

Input: List of edges in causal map, List of intervention nodes, List of
observation nodes, Penalty
1 finalPaths <
2 foreach intervention do

3 visitedNodes «+
4 paths < {{intervention,0}} // each node in a path is a pair
(name, cost)
bestTarget « {0,0}
while bestTarget, ¢ observations do
bestTarget «+— {(),00}  // track current most-optimal edge
to add
8 bestPath < {0}
9 foreach path € paths do
10 traversal < () // track current traversal through path
11 foreach node € path do
12 traversal <— traversal U node
13 targets < {t|(node1,t) € edges}
14 foreach target € targets do
15 if target ¢ visitedNodes // ignore
already-visited nodes
16 then
17 if (nodey,target)yeignt € | —1,1[ then
18 cost < nodes + 1.0 // if edge weight is
known, marginal cost = 1
19 else
20 cost < nodes + penalty // otherwise,
marginal cost = penalty
21 if cost < bestTarget, then
22 bestTarget < target
23 bestPath < traversal
24 newPath < bestPath U bestTarget
25 if bestTarget € observations // if target € observationms,
this root is finished
26 then
27 | finalPaths(intervention) < newPath
28 else
29 paths < paths U newPath // otherwise, save to
current paths and continue
30 visitedNodes ¢ visitedNodes U bestTarget

Both algorithms are exemplified on the next page. They produce the same
paths for interventions I1 and 12 but differ on 3. In this example, Algorithm 2
is better: it uses 10 evidence-based rules and makes five assumptions, whereas
Algorithm 1 needs more rules (11) and also makes more assumptions (six).
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Fig. 2. The same map (top) being processed by both algorithms: shortest paths (left)

and minimal paths (right). This high resolution figure can be zoomed in using a digital
copy of this article.
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3.3 Differences in practice: a sample case study

Algorithms 1 and 2 are conceptually different as they correspond to different
preferences from modelers: the simplest set of rules to connect each intervention
(Alg. 1) or an emphasis on evidence-based rules (Alg. 2). As exemplified by
Figure 2 on the previous page, these algorithms can produce different models in
terms of number of rules or assumptions. Two items remain in order to assess
the impact of these different model design strategies. First, we need to examine
how the number of rules or assumptions differ when these strategies are used in
practice rather than in an idealized environment. Second, we need to evaluate
the possible choices for datasets regarding the concept nodes, which also benefits
from a case study rather than an artificially constructed situation.

Our brief case study is a model of suicide. Data is openly accessible at
https://osf.io/Tnxp4/, which include (i) the systems map together with the un-
certainty level for each edge (3—big map with weights’) and (ii) which one(s) of
four datasets can be used for each concept node (5—Nodes data availability’).
Our algorithms are implemented in a Jupyter Notebook for Python 3, which also
contains the results (6—Common modeling strategies’). The systems map is com-
posed of 361 concept nodes and 946 causal edges. As detailed in the Notebook,
there are 5 intervention nodes and 3 outcome nodes.

We performed a parameter sweep to assess how the penalty in Algorithm 2
impacts its two target outcomes: the percentage of unknown edges and the av-
erage size of the model. Results in Figure 3 show that the only difference is
encountered if the cost of unknowns is less than 1, that is, less than using a
known edge. Specifically, the only values of penalty that had an effect on results
were in the range 0.2 < penalty < 0.6. However, creating evidence-based rules
cannot be more expensive than making assumptions for unknown edges. The
penalty of unknown would thus be always greater than 1. Consequently, when
the penalty is within a valid range, then the results are always the same.

Using Algorithm 1, the model re-
quires 3 assumptions on edges and 4 as-
sumptions on nodes. The five paths cre-
ated for each intervention had no over- ¥ig.3. Evaluation of the penalty param-
lap. Two datasets can be interchange- eter in Algorithm 2 With. respect to un-

. ] ) . known edges and model size.

ably used as they each support the same .. i oo percent of
number of nodes. With Algorithm 2, re- =
sults are identical. Despite valuing dif-
ferent aspects of a model and having
a large problem space, the two design
strategies result in the same model. Ei-
ther strategy has room for improvement
as the resulting model requires making
many assumptions (7) and is composed ;.
of parts that may be locally optimal but Penalty (cost 02 using an unknown edge) 10
miss an opportunity for global savings

(disjoint paths across all interventions).

Minimum practical value |
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4 Discussion and conclusion

Several frameworks such as the Characterisation and Parameterisation (CAP)
framework [31] and its revised version [30] have been proposed to track how
computational individual-level models are designed. Such frameworks provide
valuable guidance to help standardize the description of modeling studies (c.f.
the application of the CAP framework to 11 studies in [32]) by listing the broad
types of data or methods involved at each stage. However, there is currently no
framework to explain how modelers choose what factors to keep and which rules
to make, based on the goal of the model and available data. These choices are
important for the transparency and replicability of modeling studies, which often
face a high level of structural uncertainty. In addition, these choices have conse-
quences on the robustness and computational costs of models: inefficient model
building strategies that result in making a very large number of assumptions
may require extensive sensitivity analyses, which come at a high cost. In this
paper, we propose the first formal framework to express model-building strate-
gies. We demonstrated that the perfect strategy is NP-Hard, hence modelers
will employ heuristics that emphasize specific aspects. We stress this point, as
it means that a perfect model cannot be built automatically and instead model-
ers need to clearly state which measures they value, then map these preferences
onto an algorithm. We showed how two common strategies can be systematically
expressed in an algorithmic manner and demonstrated that they can result in
different models, although differences may not be manifest in practice.

We noted that both of these common model-building strategies miss several
opportunities to decrease the uncertainty of the resulting model. Creating the
model with the least number of rules to keep it ‘simple’ may result in high un-
certainty compared to having a tolerance for slightly more rules as long as they
are evidence-based. Most importantly, when models are designed to support
multiple interventions, it would be beneficial to aim for synergies by identifying
common mechanisms across interventions rather than operationalizing each one
independently. The design and evaluation of algorithms leveraging these oppor-
tunities would be a worthwile investment for future studies. Such tools can help
modelers in shifting from the currently time consuming and ad-hoc practice of
model design into a more efficient and systematic approach.

As our framework is the first to tackle complex practices, it comes with
simplifications. When simplifications prevent a direct use of the framework by a
modeling team, they become limitations and changes are necessary. Although we
separately report uncertainty on causal mechanisms (i.e. on edges in the prob-
lem space) and concept nodes (i.e. insufficient data), our framework is limiting
in capturing the cost of uncertainty on nodes. We focused on using one dataset
to maximize node coverage, but modelers can use multiple datasets as long as
the individuals captured in these datasets can be accurately linked. For example,
consider that two datasets have nothing in common: one cover depression and
stress, while the other contains information on poverty and bullying. If a simu-
lated entity was independently given baseline values on depression and poverty,
then it would ignore the correlation between these features and model uncer-
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tainty grows. Conversely, if the two datasets have shared features that strongly
characterize individuals (e.g., age, gender, income, ethnicity) then we may pre-
serve more (but not all) of the real-world dependencies, hence lowering model
uncertainty. A possible extension of our framework would thus address how the
cost of uncertainty is impacted by the ability to link datasets.
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