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Abstract. This paper deals with the development of a stable and effi-
cient unified finite element method for the numerical solution of thermal
Darcy flows with variable viscosity. The governing equations consist of
coupling the Darcy equations for the pressure and velocity fields to a
convection-diffusion equation for the heat transfer. The viscosity in the
Darcy flows is assumed to be nonlinear depending on the temperature
of the medium. The proposed method is based on combining a semi-
Lagrangian scheme with a Galerkin finite element discretization of the
governing equations along with an robust iterative solver for the asso-
ciate linear systems. The main features of the enhanced finite element
algorithm are that the same finite element space is used for all solu-
tions to the problem including the pressure, velocity and temperature. In
addition, the convection terms are accurately dealt with using the semi-
Lagrangian scheme and the standard Courant-Friedrichs-Lewy condition
is relaxed and the time truncation errors are reduced in the diffusion
terms. Numerical results are presented for two examples to demonstrate
the performance of the proposed finite element algorithm.

Keywords: Thermal Darcy flows ·Unified finite elements · Semi-Lagrangian
method · Moving fronts.

1 Introduction

In the present study, given a bounded two-dimensional domain Ω ⊂ R2 with
Lipschitz continuous boundary Γ and a time interval [0, T ], we focus on solving
a time-dependent heat equation coupled with the Darcy equations. For all (x, t)
in the domain Ω × [0, T ], the governing equations read

ν(Θ)u+∇p = f(Θ), in Ω,
(1a)

∇ · u = 0, in Ω,

DΘ

Dt
− κ∇2Θ = g(x, t), in Ω, (1b)
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where u is the velocity field, p the pressure and Θ the fluid temperature. In the
Darcy equations (1a), ν is the variable viscosity and f the force density which
both are dependent on the temperature. In the heat equation (1b), κ is the
thermal diffusivity coefficient supposed to be a positive constant, g an external
source term and

DΘ

Dt
=
∂Θ

∂t
+ u · ∇Θ, (1c)

is the total derivative which measures the temperature rate of change along the
trajectories of the fluid particles known by characteristic curves. The system of
equations (1a)-(1b) is equipped with an initial condition

Θ(x, 0) = Θ0(x), in Ω, (1d)

as well as given boundary conditions. In view of simplification, homogeneous
Dirichlet boundary conditions are considered for the pressure and temperature,
while a no-slip boundary condition is prescribed on the velocity:

p = 0 and u · n = 0, on Γ, (1e)

Θ = 0, on Γ, (1f)

where n is the unit outward normal vector on the boundary Γ . Notice that the
present study easily extends to different types of boundary conditions without
major conceptual changes in the formulation. It should be stressed that the
system of equations (1) has been widely used in the literature to model several
applications of fluid mechanics such as transport of contaminants in saturated
zones and aquifers, heat explosion problems in the chemical industry, nuclear
waste and carbon dioxide geological storage, see [2,10,11,20,26,27] among others.
In bio-medical fields, the model has also been used to study the so-called bio-
heat transfer, the arterial and venous blood flows by considering the human
body as a deformable porous medium, see for instance [21,22,30]. While the
mathematical theory and existence of a weak solution for the problem (1) is well
developed in the literature [9,17], the numerical resolution is still challenging for
several reasons. Especially, when the diffusion term is negligible in comparison
with the convective term. In such a case, the numerical solution give rise to
serious computational difficulties by generating either non-physical oscillations or
numerical dissipation in the presence of steep fronts and shocks, see for instance
[12,13,24,28].

Numerical techniques used to deal with these difficulties include Eulerian
finite element methods which are usually easy to implement. However, most
Eulerian methods use fixed grids and incorporate some upstream weighting in
their formulations to stabilize spatial discretization. In addition, time truncation
errors dominate their solutions and are subject to the Courant-Friedrichs-Lewy
(CFL) stability conditions, which impose a sever restriction on the size of the
time steps taken in numerical simulations. In the current work, we use a semi-
Lagrangian finite element method to deal with the transport equation in (1).
This class of methods has been used for solving many convection-dominated
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flow problems, see for example [12,13,23,24,27,26]. The main advantage in these
methods is that they allow to convert the temperature equation in (1) from an
Eulerian description to a semi-Lagrangian one in terms of the particle trajecto-
ries, also known as characteristics, and to treat the transport part (1c) separately
in the finite element discretization. Thus, the time derivative and the convection
terms are combined as a directional derivative along the particles trajectories,
leading to a characteristic time-stepping procedure. This results in a substantial
reduction in the computational cost and in the time truncation errors. Moreover,
the semi-Lagrangian scheme offers the possibility of using time steps that exceed
those allowed by the stability CFL condition for the conventional Eulerian meth-
ods, see [14,15,16,26] for further details. Next, to improve the accuracy of the
enhanced method, we use a stabilization technique proposed by [5] for spatial
discretization of Darcy equations. The main advantage of this technique is that
it allows the use of equal-order finite element approximations for all solutions
in the problem and thus, it does not require the use of mixed formulations such
as those widely employed in the literature, see for instance [1,25]. In [5], it was
shown that the stabilization method is unconditionally stable and it allows to
achieve optimal accuracy with respect to solution regularity.

This paper is organized as follows. Formulation of the proposed semi-La-
grangian finite element method is presented in section 2. Section 3 is devoted
to numerical results for two test examples for coupled Darcy-heat problems.
Concluding remarks are presented in Section 4.

2 Semi-Lagrangian finite element method

Let Ωh ⊂ Ω̄ = Ω∪Γ denotes a quasi-uniform partition of Ω into triangular finite
elements Kj with the partition step h. We define the conforming finite element
space for the temperature and pressure as

Vh =
{
vh ∈ C0(Ω) : vh

∣∣
Kj
∈ Pk(Kj), ∀ Kj ∈ Ωh

}
,

where Pk(Kj) is the space of complete polynomials of degree k, k ≥ 2, on each

element Kj . We also define the conforming finite element space Vh = (Vh)
2

for
the velocity field. For time discretization, we divide the time interval [0, tN ] into
N equal subintervals [tn, tn+1] with length ∆t = tn+1 − tn for n = 0, 1, . . . , N .
Then, we formulate the finite element solutions to un(x), pn(x) and Θn(x) as

unh(x) =

M∑
j=1

Unj ◦ ϕj(x), pnh(x) =

M∑
j=1

Pnj φj(x), Θnh(x) =

M∑
j=1

T nj φj(x), (2)

were the symbol ◦ denotes the hadamard product that produces vectors through
element-by-element multiplication of the original two vectors. In (2), Unj , Pnj and
T nj are the corresponding nodal values of unh(x), pnh(x) and Θnh(x) respectively

defined by Unj = unh(xj), P
n
j = pnh(xj) and T nj = Θnh(xj), with {xj}Mj=1 being

the set of mesh points in the partition Ωh, {ϕj}Mj=1 = {(φj , φj)}Mj=1 and {φj}Mj=1

are the basis vectors and functions of Vh and Vh respectively given by the
Kronecker delta symbol.
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Next, we define the functional spaces that are useful for the existence and
uniqueness of the solution of problem (1). We introduce the Hilbert space

H1
0 (Ω) =

{
v ∈ H1(Ω) : v|Γ = 0

}
.

We also define the space L2
0(Ω) of all square integrable functions with vanishing

mean as
L2
0(Ω) =

{
w : Ω −→ R :

∫
Ω

wdΩ = 0

}
.

We define the following inner product and norm in L2(Ω):

(w, v) =

∫
Ω

wv dΩ and ‖v‖L2(Ω) = (v, v)
1
2 , ∀ w, v ∈ L2(Ω).

We recall the standard space:

H0 (div,Ω) =

{
v ∈ H(div,Ω) : (v · n)

∣∣∣
Γ

= 0

}
.

To approximate the velocity and pressure solutions of the Darcy equations (1a),
we shall need the equal-order finite element pair (Sh, Qh) defined as

Sh = Vh ∩H0 (div,Ω) and Qh = Vh ∩ L2
0(Ω). (3)

We also introduce the necessary finite element space Rh to approximate the
temperature solution of the heat equation (1b) as

Rh = Vh ∩H1
0 (Ω) . (4)

Notice that the spaces introduced above are necessary to prove the existence
and uniqueness of the solution of problem (1), see for instance [4,5,26].

2.1 Solution of the Darcy-heat problem

As in most finite element methods, we start with the weak formulation that
reads as : Find (u, p, Θ) in H0 (div,Ω)× L2

0(Ω)×H1
0 (Ω) such that∫

Ω

ν(Θ)u · s dΩ −
∫
Ω

p∇ · s dΩ =

∫
Ω

f(Θ) · s dΩ, ∀ s ∈ H0(div,Ω),

(5a)∫
Ω

q ∇ · u dΩ = 0, ∀ q ∈ L2
0(Ω),∫

Ω

DΘ

Dt
r dΩ + κ

∫
Ω

∇Θ · ∇r dΩ =

∫
Ω

gr dΩ, ∀ r ∈ H1
0 (Ω). (5b)

Note that it is evident to prove that any triplet (u, p, Θ) in H0(div,Ω)×L2
0(Ω)×

H1
0 (Ω) solving the problem (1) in the sense of distributions in Ω is a solution of

the weak problem (5), see [8,26] for more details. To approximate the velocity,
pressure and temperature solutions of system (5a), we use the equal-order finite
element spaces Sh, Qh and Rh defined in (3) and (4), respectively. Note that
equations (5a) can also be rewritten as

A (uh, sh)− B (ph, sh) = Lf (sh) , ∀ sh ∈ Sh,
(6)

B (qh,uh) = 0, ∀ qh ∈ Qh,
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where A, B are the bilinear forms and Lf is the linear form defined as

A(uh, sh) =

∫
Ω

ν(Θ)uh · sh dΩ, B(ph, sh) =

∫
Ω

ph∇ · sh dΩ,

Lf (sh) =

∫
Ω

f(Θh) · sh dΩ.

It should also be noted that stable and accurate solutions of the discrete problem
(6) are obtained for discrete spaces Sh and Qh satisfying the known discrete inf-
sup condition [7]. However, the velocity-pressure space (Sh, Qh) does not verify
the inf-sup condition associated with the mixed form (6), see [5,6,19] for further
details. Then, the discrete weak problem is not stable, which makes it necessary
to opt for a stabilization technique. To deal with it, we use a polynomial pressure-
projection stabilization method which makes that the pair (Sh, Qh) verifies a
stabilized form of the inf-sup condition [4,5]. Thus, the stabilized weak form of
equations (5a) reads as : Find (uh, ph) ∈ Sh ×Qh such that

A (uh, sh)− B (ph, sh) = Lf (sh) , ∀ sh ∈ Sh,
(7)

B (qh,uh) = D (ph, qh) , ∀ qh ∈ Qh,

where D is the bilinear form defined as

D (ph, qh) =

∫
Ω

(ph −Πk−1ph) (qh −Πk−1qh) dΩ.

Here, Πk−1 is the projection operator Πk−1 : L2(Ω) −→ [P ]k−1 defined as

Πk−1(p) = arg min
1

2

∫
Ω

(Πk−1q − p)2 dΩ, ∀q ∈ [P ]k−1 , (8)

with [P ]k−1 being the discontinuous polynomial space:

[P ]k−1 =

{
q ∈ L2(Ω) : q

∣∣∣∣
Kj

∈ Pk−1(Kj), ∀ Kj ∈ Ωh

}
.

Next, we use the modified method of characteristics to solve the heat equation
(5b). The main idea is to treat the transport term (1c) of equation (5b) in
Lagrangian, and separately in the finite element discretization. Then, the new
temperature solution is approximated at each time subinterval [tn, tn+1] using
the characteristic curves, also known as the departure points, associated with
the material derivative (1c). These characteristic curves are the solutions of the
ordinary differential equations

dX(x, tn+1; t)

dt
= u (X(x, tn+1; t), t) , ∀ (t,x) ∈ [tn, tn+1]× Ω̄,

(9)
X(x, tn+1; tn+1) = x.

The existence and uniqueness of the solution of (9) for all times t are established,
see for instance [18]. To obtain the departure points {Xn

hj} for each mesh point
xj , j = 1, . . . ,M , we use the algorithm proposed in [29] which accurately solves
(9) with a second-order accuracy. We write the solution of (9) in the form of
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Xn
hj = xj −αhj , j = 1, . . . ,M, (10)

where the displacement αhj is calculated by the iterative procedure

α
(0)
hj =

∆t

2

(
3unh (xj)− un−1h (xj)

)
,

(11)

α
(k+1)
hj =

∆t

2

(
3unh

(
xj −

1

2
d
(k)
hj

)
− un−1h

(
xj −

1

2
d
(k)
hj

))
, k = 0, 1, . . . .

To evaluate values of the approximate velocities in (11), we first identify the

mesh element K̂j where xj −
1

2
α

(k)
hj resides. Then, a finite element interpolation

on K̂j is performed according to (2). Thus, assuming that the pairs (Xn
hj , K̂j)

along with the mesh point values
{
T nj
}

are known for all j = 1, . . . ,M , we can

approximate the values
{
T̂ nj
}

by

T̂ nj := Θnh(Xn
hj) =

M∑
k=1

Tkφ(Xn
hj). (12)

The solution
{
Θ̂nh

}
of the heat equation (1b) is then obtained by

Θ̂nh(x) =

M∑
j=1

T̂ nj φj(x). (13)

Notice that (12) and (13) are respectively, the local and global approximations
of the solutions Θnh at the departure points Xn

hj .

2.2 Time integration procedure

For time integration, we use a second-order semi-implicit Crank-Nicolson scheme.
Then, we obtain the discretization of the Darcy-heat problem (5) as: Find(
un+1
h , pn+1

h , Θn+1
h

)
in Sh ×Qh ×Rh such that∫

Ω

ν(Θ̂nh)un+1
h · sh dΩ −

∫
Ω

pn+1
h ∇ · sh dΩ =

∫
Ω

f(Θ̂nh) · sh dΩ, ∀ sh ∈ Sh,

(14a)∫
Ω

qh ∇ · un+1
h dΩ =

∫
Ω

(
pn+1
h −Πk−1p

n+1
h

)
(qh −Πk−1qh) dΩ, ∀ qh ∈ Qh,

∫
Ω

Θn+1
h − Θ̂nh
∆t

rh dΩ +
κ

2

∫
Ω

∇Θn+1
h · ∇rh dΩ =

∫
Ω

gnhrh dΩ +

κ

2

∫
Ω

∇Θ̂nh · ∇rh dΩ, ∀ r ∈ Rh, (14b)

where Θ̂nh are the characteristics curves obtained by (13) and gnh the function
given by

gnh =
1

∆t

∫ tn+1

tn

gh(s) ds.

For the existence and uniqueness of the solution of (14), we consider the following
assumptions:
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Assumption 1 The functions ν, f and g are assumed to verify:

1. ν is Lipschitz continuous and there exist two strictly positive constants ν1
and ν2 such that

ν1 ≤ ν(ξ) ≤ ν2, ∀ ξ ∈ R.

2. f is Lipschitz with respect to its variable Θ, i.e.,

‖f(Θ)‖L∞(0,T ;L2(Ω)d) ≤ cf ‖Θ‖L∞(0,T ;L2(Ω)d) ,

where cf is a positive constant.
3. g ∈ L2

(
0, T ;L2(Ω)

)
.

Assumption 2 For all p ∈ L2(Ω), the operator Πk−1 defined in (8) is assumed
to satisfy :

1. Πk−1: L2(Ω) −→ L2(Ω) is continuous and

‖Πk−1p‖L2(Ω) ≤ c ‖p‖L2(Ω) , (15)

where c is a positive constant independent of h.
2. The properties of Πk−1 must be augmented by the approximation

‖p−Πk−1p‖L2(Ω) ≤ c
′h |p|H1(Ω) , (16)

where c′ is a positive constant independent of h.

Thus, for the a priori bounds for the numerical solutions, we have the following
Theorem:

Theorem 1 At each time step tn and for given Θ̂nh ∈ Rh, problem (14) has a
unique solution
(un+1

h , pn+1
h , Θn+1

h ) in Sh ×Qh ×Rh that verifies the following bounds:

∥∥un+1
h

∥∥2
L2(Ω)d

≤
(
cf
ν1

)2 ∥∥∥Θ̂nh∥∥∥2
L2(Ω)d

+ ch2
∣∣pn+1
h

∣∣2
H1(Ω)

, (17)

∥∥Θn+1
h

∥∥
L2(Ω)

−
∥∥∥Θ̂nh∥∥∥

L2(Ω)
≤ ∆t ‖gnh‖L2(Ω) , (18)

where c is a positive constant independent of h. 2

Proof. It is clear that the Darcy equations (7) have a unique solution since they
satisfy the stabilized inf-sup condition [4,5]. Let a and b be two real numbers.
For any positive real number ε, we have the well-known Young’s inequality

ab ≤ 1

2ε
a2 +

1

2
εb2. (19)

By testing equations (14a) with sh = uh and qh = ph and using the Cauchy-

Schwarz inequality and (19) with ε =
ν1
cf

, along with Assumptions 1 and 2, we

immediately derive (17).
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Next, knowing unh ∈ Sh and thus Θ̂nh , the heat equation (14b) admits also a

unique solution Θn+1
h ∈ Rh. Thus, if we take rh = Θn+1

h + Θ̂nh in (14b), we
obtain and use the Cauchy-Schwarz and triangle inequalities, we easily get the
inequality (18).

It is clear that the heat equation (14b) gives rise to the linear system form(
[M] +

∆t

2
[S]
)
T n+1 = [M]

(
T̂
n

+∆t Gn)
)
− ∆t

2
[S] T̂

n
, (20)

with T n+1 =
(
T n+1
1 , . . . , T n+1

M

)T
, T̂

n
=
(
T̂ n1 , . . . , T̂ nM

)T
andGn = (gn1 , . . . , g

n
M )

T

being the source term vector. Here, [M] and [S] are the mass and stiffness ma-
trices whose elements are given respectively by

mij =

∫
Ω

φjφi dΩ, sij =

∫
Ω

∇φj∇φi dΩ, i, j = 1, . . . ,M.

Thus, the solution of the coupled Darcy-heat problem (1) can be reformulated
in matrix form as 

[A] [B] [O]

[B]
T

[D] [O]

[O] [O]
[
M̂
]




U

P

T

 =


F

O

R̂

 , (21)

where U, P and T are M -valued vectors with unknowns entries Unj , Pnj and T nj
(j = 1, . . . ,M), respectively, as defined in (2). In (21), [O] is the M square zero
matrix, [A], [B] and [D] are square M × M -valued matrices whose elements
entries, according to (7), are respectively given by

aij =

∫
Ω

ϕj · ϕi dΩ, bij = −
∫
Ω

φj(∇ · ϕi) dΩ,

dij =

∫
Ω

(φj −Πk−1φj) (φi −Πk−1φi) dΩ,

where i, j = 1, . . . ,M , and
[
M̂
]

is the matrix given by
[
M̂
]

= [M] +
∆t

2
[S]. In

the right-hand side of (21), F is the M -valued vector with entries

Fj =

∫
Ω

f(T̂ nj ) · ϕi dΩ, i, j = 1, . . . ,M,

O is the zero vector in RM and R̂ is the right-hand side of (20).
To summarize, the implementation of the proposed semi-Lagrangian unified

element method for solving the coupled Darcy-heat equations (1) is carried out
following the steps in Algorithm 1. Note that, since only the right-hand side
of the linear system (21) changes at subsequent time steps, it is convenient to
use a Cholesky factorization at the first time step thus the solution is reduced
into subsequent forward and backward substitutions. This can significantly in-
crease the efficiency when a large number of time steps is required, compared to
updating the matrix and fully solving the system at every time step.
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Algorithm 1

1: Assemble and store the matrices associated to the linear system (21).
2: while tn+1 ≤ T do
3: for each mesh element Kj do
4: Calculate the departure point Xn

j using the algorithm (11).

5: Search-locate the mesh element K̂j where Xn
j belongs.

6: Evaluate the solutions Θ̂n
j = Θn(Xn

j ) using (12).
7: end for
8: Assemble and store the right-hand sides associated to the linear system (21).
9: Compute the solution of (1) by solving the linear system (21).

10: end while

3 Numerical experiments

To validate the accuracy and performance of the proposed semi-Lagrangian fi-
nite element method, we present numerical results for two coupled Darcy-heat
problems. All the computations are performed using unstructured triangular
meshes with different element densities and by using the quadratic P2 elements
for all the solutions in the model (1). The obtained linear system of algebraic
equations (21) is solved using the conjugate gradient solver with incomplete
Cholesky decomposition. Moreover, all stopping criteria for iterative solvers are
set to 10−7 which is small enough to guarantee that truncation errors in the
algorithm dominate the total numerical errors.

3.1 Accuracy coupled Darcy-heat problem

In this test example, We consider the following time-dependent coupled Darcy-
heat equations

ν(Θ)u+∇p =
(
Θ + f(x, y, t)

)
j, (x, y, t) ∈ Ω × [0, T ],

∇ · u = 0, (x, y, t) ∈ Ω × [0, T ], (22)

∂Θ

∂t
+ u · ∇Θ − κ∇2Θ = g(x, y, t), (x, y, t) ∈ Ω × [0, T ],

supplemented with the following initial condition

Θ(x, y, 0) = 0 (x, y) ∈ Ω. (23)

In (22), j = (0, 1)> is the unit vector in the upward direction, Ω = [0, 3]× [0, 3],
and ν(Θ) = Θ+1. The functions f(x, y, t) and g(x, y, t) are calculated such that
the exact solution of (22) is given by

u(x, y, t) = e−t/4curlψ, p(x, y, t) = (t+ 1) cos(
π

3
x) cos(

π

3
y),

Θ(x, y, t) = sin(t)x2(x− 3)2y2(y − 3)2,
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Table 1. Relative L2-error and convergence rates obtained for the pressure, velocity
and temperature solutions in the accuracy test example of the coupled Darcy-heat
problem at time t = 1.

Pressure p Velocity u Velocity v Temperature Θ

h Iter L2-error rate L2-error rate L2-error rate L2-error rate

1
16

14.2 1.897561E-03 — 5.88932E-01 — 6.85811E-01 — 1.59171E-02 —
1
32

13.6 5.26369E-04 1.85 1.56710E-01 1.91 1.18123E-01 1.92 4.17711E-03 1.93
1
64

12.1 1.44001E-04 1.87 4.14113E-02 1.92 3.03099E-02 1.93 1.05886E-03 1.98
1

128
11.1 3.75290E-05 1.94 1.06439E-02 1.96 7.73669E-03 1.97 2.66556E-04 1.99

1
256

10.7 9.18917E-06 2.03 2.64259E-03 2.01 1.90754E-03 2.02 6.57216E-05 2.02

where the function ψ is defined as

ψ(x, y, t) = e−3
(
(x−1)2+(y−1)2

)
.

In our numerical simulations, the diffusion coefficient value is κ = 5× 10−4 and
the time step ∆t = 0.05. Table 1 shows the averaged number of iterations in
the linear solver, the relative L2-errors and convergence rates at time t = 1 for
the pressure p, the velocity u = (u, v)> and the temperature Θ using differ-
ent structured meshes with uniform step h. It is obvious that, increasing the
mesh density in the numerical simulations results in a decrease in the number
of iterations needed for the linear solver and in the relative L2-error for all vari-
ables and thus, a good approximation for the pressure, velocity and temperature
solutions at the time in question. As expected, the proposed semi-Lagrangian
finite element method converges at about the same rate for all meshes and for
all solutions confirming a second-order accuracy.

3.2 Moving thermal front past an array of cylinders

In this second example, we consider a problem of moving thermal front in a
channel past an array of circular cylinders. We present the numerical solution
of the system of equations (1) in a channel of length L = 4 and height H = 1.
The channel consists of 16 circular cylinders with equal diameter and uniformly
distributed in the second quarter of the channel at the domain [1, 2] × [0, 1].
In [3], a similar computational domain was considered but with square-shaped
obstacles, and in order to study the incompressible Navier-Stokes equations.
Here, no-slip boundary condition is imposed at all cylinder walls. The left and
right vertical walls are respectively, at dimensionless temperatures Θ = 0.5 and
Θ = −0.5 whereas, the top and bottom walls are insulated. Initially, the flow is
at cold rest i.e., u = 0 and Θ = −0.5. In our simulations, a non-linear viscosity
defined by ν (Θ) = sin(Θ) + 2 is used in (1), the source terms f = 0 and
g = 0. In order to ensure accuracy and efficiency in the numerical method, we
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Fig. 1. Mesh used for the moving thermal front past an array of 16 cylinders of equal
radius R = 0.125 uniformly distributed in a channel of length L = 4 and height H = 1.
Here, the mesh contains 12224 triangular elements and 25295 nodes.

Fig. 2. Results for temperature for ν(Θ) = sin(Θ) + 2. From left to right: t = 1, t = 3,
t = 5 and t = 7. From top to bottom: κ = 0.01, κ = 0.001, and κ = 0.0005.

use the unstructured triangular mesh depicted in Figure 1 with 12224 elements
and 25295 nodes in our simulations. To approximate the temperature, velocity
and pressure solutions, we use the quadratic P2 finite elements. In Figure 2 and
Figure 3, we display the results obtained for the temperature and velocity fields
at four different instants namely, t = 1, t = 3, t = 5 and t = 7. To examine
effects of diffusion in the moving thermal front past the cylinders, we present
numerical results for three different values taken for the diffusion coefficient,
κ = 10−2, 10−3 and 5 × 10−4. For a better insight, Figure 4 illustrates the
vertical cross-sections at x = 2.05 of the temperature and the u-velocity at time
t = 5 using the considered diffusion coefficient. It is clear that the cross-sections
in Figure 4 show good symmetry in the numerical simulations. Similar features,
not presented here, have been obtained at other locations in the channel using
different values of κ. The results clearly illustrate the influence of the diffusion
variation on both the temperature patterns and velocity fields.

Indeed, when the diffusion coefficient κ decreases, the transport speed in-
creases with the size of the thermal front exhibiting steep gradients with different
magnitudes, thin boundary layer, and separating shear layers. It is also worth
noting that when the diffusion value is set to κ = 5 × 10−4, the flow becomes
convection-dominated and steep fronts along with shock solutions appear in the
temperature solution. For the considered Darcy-heat problem, these results ob-
viously show that the small complex structures of the temperature being well
captured by the proposed semi-Lagrangian finite element method. In fact, the
computed solutions remain stable and highly accurate even when a relatively
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Fig. 3. Results for velocities for ν(Θ) = sin(Θ) + 2. From left to right: t = 1, t = 3,
t = 5 and t = 7. From top to bottom: κ = 0.01, κ = 0.001, and κ = 0.0005.

Fig. 4. Vertical cross-sections obtained in the channel at x = 2.05 for the temperature
(left plot) and the u-velocity (right plot) for the Darcy-heat problem at time t = 5
using different diffusion coefficient values κ = 10−2, 10−3 and 5× 10−4.

coarse mesh is used, and the numerical resolution does not require the use of
small time steps and mixed finite element discretizations.

4 Conclusions

In this study, we have presented a semi-Lagrangian finite element method for
the numerical solution of time-dependent Darcy-heat problems. The governing
equations consist of a nonlinear Darcy problem, with a variable viscosity, for the
flow field and pressure coupled with a time-dependent convection-diffusion equa-
tion for the heat transfer. The enhanced method consists of coupling the semi-
Lagrangian approach with a Galerkin finite element discretization on unstruc-
tured grids. To stabilize the solutions, we use a polynomial pressure-projection
stabilization approach enabling the use of equal-order finite element approxi-
mations for all solutions in the coupled problem. The proposed method avoids
mixed finite element formulations which generally require a higher computa-
tional cost for mesh generation and element matrix assembly. In our numerical
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simulations, we use the P2-type polynomials to formulate the finite element so-
lutions. However, the method can also be extended to the use of higher order
polynomials based on a similar formulation. Numerical results have been pre-
sented for a test example with known exact solutions. The method has also been
applied for solving a moving thermal front problem past an array of cylinders
using different diffusion values. The presented results support our expectations
for an accurate and stable behaviour for all transport regimes considered. Future
work will concentrate on the extension of this method to Darcy-heat problems
in three-dimensional domains using high-order finite element discretizations on
unstructured meshes.
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