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Abstract. Deep neural networks are the frontier in object detection, a
key modern computing task. The dominant methods involve two-stage
deep networks that heavily rely on features extracted by the backbone in
the first stage. In this study, we propose an improved model, ResNeXt1018S,
to improve feature quality for layers that might be too deep. It introduces
splits in middle layers for feature extraction and a deep feature pyramid
network (DFPN) for feature aggregation. This backbone is neither much
larger than the leading model ResNeXt nor increasing computational
complexity distinctly. It is applicable to a range of different image reso-
lutions. The evaluation of customized benchmark datasets using various
image resolutions shows that the improvement is effective and consistent.
In addition, the study shows input resolution does impact detection per-
formance. In short, our proposed backbone can achieve better accuracy
under different resolutions comparing to state-of-the-art models.

Keywords: Object Detection - Deep Learning - Deep Neural Networks
- Input Resolutions - Feature Extraction - Feature Learning

1 Introduction

As a longstanding and fundamental field in computer vision, object detection
remains an active yet challenging area in modern Al [16, 25]. The goal of object
detection is to determine whether there are any objects of given categories (such
as person, dog, car) in the given images, if present, to return the location and area
of each object instance marked by a bounding box [20]. The recent success of deep
learning has made significant advancements in object detection [24]. In general,
there are two dominating deep network backbones, Faster RCNN (Region Based
Convolutional Neural Networks) and Mask RCNN, proposed by Girshick et al.
[19,5]. They achieved state-of-the-art performance on various datasets such as
the MS COCO (Microsoft Common Objects in Context) dataset.

In this study, we aim to improve object detection by proposing alternative fea-
ture extraction layers for the existing backbones. The hypothesis is that features
from the multi-resolution feature layers may have different importance towards
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the final object objection performance. Features at certain layers may not be well
captured if the layer is too deep. Hence redirecting the flow of feature learning
may be more beneficial as feature quality may be improved. Consequently, the
detection performance can be improved. The existing object detection frame-
work could be enhanced by leveraging these features. In addition, the effect of
input resolution is investigated in this study. Input size does not only affect
network structure but also connects to detection accuracy. Existing work shows
that low resolution may not negatively impact some vision tasks yet can signifi-
cantly save computational cost [27]. A study by [17] shows that face recognition
requires a minimum resolution of 32 x 32 pixels. However, the input size for
object detection is relatively unexplored [21]. Hence the proposed improvement
on object detection backbone accommodates that need so the input of different
sizes can be used. To evaluating the effectiveness of the proposed improvement,
customized benchmark COCO data are used in the following study. The pro-
posed object detection backbone is beneficial as evidenced by the comparison
with state-of-the-art. The details are presented in the following sections.

2 Background & Related Work

Object detection is defined as follows, to determine if or not there are instances
of objects from given categories on a given image. If objects are present, the
locations and areas of the detected instances should be marked. Although there
are numerous kinds of objects that exist in our visible world, object detection
research mainly studies methods for detecting highly structured objects and ar-
ticulated objects rather than unstructured scenes. Structured objects such as
faces, cars, ships, and airplanes, normally have a consistent shape. Articulated
objects are usually living beings such as a person, a dog, and a bird. Different
from these two types of objects, unstructured scenes are unpredictable in terms of
shape, for example, sky, fire, and water. Four kinds of recognition can be derived

(¢) Semantic Segmentation (d) Object Instance Segmetation

Fig. 1. Examples of four object detection tasks illustrated by Liu et al. [13].

from object detection. That includes image-level object classification, bounding
box level object detection, pixel-wise semantic segmentation and instance-level
semantic segmentation, as illustrated by [13] (Figure 1). Surveys indicate the
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bounding box object detection is the most widely used and is the basis for eval-
uating the performance of an object detection algorithm. Some object detection
frameworks use a bonding box combined with others. For example, Mask RCNN
uses pixel-wise segmentation, which is to assign each pixel in an image to a
semantic class label for high-level detection. Object detection tasks can be han-
dled by several types of methods including deep networks models [28], statistical
models, and Genetic Programming. The currently best performing methods are
deep networks based.

2.1 Object Detection Frameworks

Many object detection models have been proposed. They can be categorized
into two groups: one-stage framework and two-stage framework. The latter is
represented by region-based frameworks which in general achieved superior per-
formance than other methods. This approach uses a CNN (Convolutional Neural
Networks) backbone to generate category-independent regions from an image.
Consequently feature extractors are embedded to find useful features from these
regions. Based on these features a classifier then is applied to determine whether
instances of a given class are present in region proposals. If present, category
labels will be returned. This type of two-stage approach can be found in many
object detection frameworks such as RCNN [4], Fast RCNN [3], Faster RCNN
and Mask RCNN. On the MS COCO object detection competition, state-of-
the-art Mask RCNN framework, Cascade Mask R-CNN (Triple-ResNeXt152,
multi-scale), achieved top performance of 71.9% mAP with ToU = 0.50 [15].

Two-stage frameworks can achieve superior detection performance. In com-
parison, one-stage frameworks can often increase detection speed as they use a
unified pipeline structure to directly predict class labels with a single neural net-
work. Region proposal network and feature extractor are absent in this category.
One-stage frameworks such as YOLO [18], SSD [14], and YOLO9000 have gained
popularity in recent years, due to their simplicity and low cost. This approach
makes real-time object detection possible especially under circumstances that
computational resource is limited, such as droids and other embedded systems.

In summary, two-stage frameworks achieve state-of-the-art detection accu-
racy with complex neural network architectures, while one-stage framework us-
ing a simple elegant structure to achieve high detection speed. This study aims
to improve object detection accuracy then focuses on the two-stage approach. In
the family of two-stage object detection frameworks, RCNN is the leading model.
Originating from the earliest RCNN model, the RCNN family has advanced to
Faster RCNN and Mask RCNN, which are mentioned before as state-of-the-art
in object detection. Hence the focus of this study is on Faster RCNN and Mask
RCNN, improving their feature extraction backbone.

2.2 Feature Extractors

One of the major components in the object detection models is the backbone,
which is responsible for extracting features for the subsequent classification stage.
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Feature extractor plays a crucial role in feature representation as well as in the
whole detection task [23].Deep neural networks (DCNNs) have been found capa-
ble of generating distinct features from raw images at a different level in multi-
resolution pyramid representation. DCNN is present in many well-known deep
models such as AlexNet [9], VGGNet [22], ResNet [6], ResNeXt [26], DenseNet
[8], and MobileNet [7] et al.. They are listed in Table 1 for comparison in terms
of parameter size, the number of layers, and test errors on the benchmark.

Table 1. Comparison of Representative DCNN for Image Classification

DCNN #Paras| #Layers |Test Error
Architecture | (x10%) [(CONV+FC)| (Top 5)
AlexNet [9] 57 5+ 2 20.91%

VGGNet19 [22] 134 13 + 2 9.62%
ResNet50 [6] 23 49 7.13%
ResNet101 [6] 42 100 6.44%

ResNeXt50 [26] 23 49 6.30%

ResNeXt-101 [26]] 42 100 5.47%

DenseNet201 [8] 18 200 6.43%

MobileNet [7] 3.2 27 + 1 9.71%

From Table 1 a trend can be seen that in general deeper networks, meaning
with more layers, can lead to better feature representation in CNN, hence to
lower error rates. Another observation is the relation between model size or the
number of parameters and the use of FC (Fully Connected) layers. A model with
a '+’ sign in Table 1 means FC is present. For example, AlexNet is 542, meaning
2 layers of FC are presented with 5 convolutional layers. From the table, we can
see that AlexNet and VGGNet utilize FC layers which result in significantly
more parameters onto the model. DenseNet and ResNet have fewer parameters
by leaving out the FC layers. Therefore, avoiding the use of FC layers can lead
to smaller models without damaging, if not improving, the detection accuracy.

After the introduction of Mask RCNN, a more effective feature extraction
method is proposed by Lin et al., call Feature Pyramid Network (FPN). FPN
uses a top-down architecture with lateral connections in each layer of the back-
bone to build a feature pyramid and made predictions independently at all levels.
These Rol (Region of Interest) features extracted from different layers contribute
to the feature maps in various aspects. Mask RCNN produces excellent accuracy
and efficiency largely due to the use of ResNet-FPN backbone [11].

2.3 Performance Evaluation

Most of the current work uses m AP for evaluation, especially after the introduc-
tion of the MS COCO dataset. Instead of using a fixed IoU (Intersection over
Union) threshold, the MS COCO introduces various metrics to better measure
the performance of a given object detection model. That includes AP (IoU =
0.50 : 0.95), AP (IoU = 0.75), and AP (IoU = 0.5). AP (IoU = 0.50 : 0.95)
metric is primarily used in the MS COCO Dataset challenge. AP (IoU = 0.75)
represents a more strict metric for evaluation. In this study, we use the most
commonly used AP (IoU = 0.5) metric to evaluate our object detection model.
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2.4 Datasets

For generic object detection, four famous datasets are utilized around the com-
munity, include PASCAL VOC [2], ImageNet [1], MS COCO [12] and Open
Images [10]. In this research, in order to study the relationship between vari-
ous image resolution and object detection models, MS COCO dataset with the
highest image resolution and well organized could be the preference around four
image datasets. In addition, object segmentation data make it possible to use in
the Mask R-CNN model, which is designed for object detection and segmentation
using segmentation-level detection technology.

2.5 Resolutions

The impact of resolution is relatively under-explored in machine vision, in par-
ticular object detection. Shivanthan et al. [27] report that using low-resolution
grayscale (LG) images for saliency detection can lead to speedups in model
training and detection time. Region Proposal Network (RPN), based on this
novel saliency-guided selective attention theory, separates the objects’ regions
and background regions. Therefore, using LG images for object detection can
greatly improve the efficiency of object detection and keep the object detection
model in a small size. But experiments indicate this model usually fails to detect
the main object when the size of the image is smaller than 64 x 64 pixels. A study
on face recognition requires a minimum input of 32 x 32 pixels [17].

3 Methodology

The main methodology of this study is presented in this section. That includes
dataset preparation for evaluation, the preliminary experiment on the chosen
data, and the design of deep models.

3.1 Data Preparation

COCO 2017 data set is a leading benchmark for object detection . Three types of
datasets are included Training dataset, Validation dataset, and Testing dataset.
The testing dataset is used for COCO competition that does not provide anno-
tations for evaluation locally, so we use the Training dataset for model learning,
and the Validation dataset to evaluate the model by computing the bounding
box AP (IoU = 0.50) value. COCO data sets contain 200,000 images of 80 object
categories. In this study, we group selected categories into three categories: rect-
angle object class (such as buses, vehicles), convex-polygon object class (such as
dogs), and round objects (such as apples). These include the most representative
classes of the COCO dataset. Such alternation is to facilitate the study espe-
cially the analysis as a benefit on backbone improvement should be independent
of how to categorize target objects.

% Available on the MS COCO dataset website http://cocodataset.org
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3.2 Preliminaries

As the RPN object detection model proposed by Shivanthan et al. failed to de-
tect the object when the image is resized to 64 x 64 pixels, we set 64 x 64 as
the definition of low resolution in our preliminary work to test the performance
of different object detection model include Faster RCNN and Mask RCNN with
various popular backbones. Model is trained with a training dataset of 64 x 64 res-
olution, and then tested on 64 x 64 validation dataset. The metric is the bounding
box mAP (IoU = 0.50) resulting from our three-class COCO datasets. Table 2
shows the results from the preliminary study which involves a range of widely
used deep models including AlexNet, MobileNet, DenseNet, VGG, ResNet mod-
els, and ResNeXt models. The suffix number after a model name is the depth of
the model. For example, ResNet34 means that is a ResNet model with 34 layers.
As can be seen from the table, with FPN, ResNet models and ResNeXt models

Table 2. Bounding box mAP (IoU=0.50) value of object detection results on validation
dataset under 64 x 64 resolution. The number in the backbone represents the number
of the layers.

Backbone Faster RCNN|Mask RCNN
AlexNet 9.7 9.9
MobileNet 14.6 14.2
Densenet201 15.7 16
VGGNet16 21.2 21.5
VGGNet19 19.8 20.7
ResNet34 + FPN 30 30.9
ResNet50 + FPN 30.8 31.7
ResNet101 + FPN 30.6 32.1
ResNet152 + FPN 31.7 31.6
ResNeXt50 + FPN 32.5 33.4
ResNeXt101 + FPN 31.4 32.2

achieved mAP values higher than other models in both Faster RCNN and Mask
RCNN. ResNeXts performs slightly better than ResNets. The subsequent study
is therefore based on ResNeXt models. In addition, Mask RCNN models, in gen-
eral, perform better than their Faster RCNN counterparts. While ResNeXt50
with FPN gets the best result of mAP on both Faster RCNN and Mask RCNN
frameworks, a natural question is that why ResNeXt101 with a deeper convolu-
tional neural network was inferior to ResNeXt50. A similar phenomenon happens
in VGGNet16 and VGGNet19. While VGGNet19 contains more layers and pa-
rameters than VGGNet16, it does not achieve a better result than VGGNet16.
The analysis is that the deeper networks may result in better features but also
may treat features indifferently through the deep layers. So deeper net may not
be as helpful if features are not utilized well. These features may not represent
some small and unnoticeable objects, especially from low-resolution images. If
these objects are indeed targets, the generated features may not capture them
leading to a slight decline in terms of m AP measure.
Preliminary work shows ResNeXt50 with FPN performs better than ResNeXt101

with FPN in object detection of low-resolution images. The detail of our model
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Table 3. ResNeXt50 structure, ResNeXt101 structure and ResNeXt101S structure.
“C=32" suggests grouped convolutions with 32 groups.

layer name ResNeXt50 [ ResNeXt101 [ResNeXt101S (ours)
convl 7 X 7,64, stride 2
3 X 3 max pool, stride 2
conv2_x 1x1, 128, 1x1,128, ] 1x1, 128,
3 x 3, 128 X 3 3 x 3, 128 X 3 3 x 3, 128 X 3
1x 1, 256, 1x 1, 256, 1x1, 256,
1x 1, 256, 1x1, 256, ] 1x1, 256,
conv3_x 3 x 3, 256 X 4 3 x 3, 256 X 4 3 x 3, 256 X 4
1x 1,512, 1x 1,512, 1x 1,512,
1x1, 512,
3x3, 512 | x6
1x1, 512, 1x1, 512, 1x 1, 1024,
conv4_x 3 x3, 512 X 6 3 x3, 512 X 23
1x1, 1024, 1x1, 1024,
B 1x1, 512,
3x3, 512 | x 17
1x 1, 1024,
1x 1, 1024, 1x 1, 1024, 1x 1, 1024,
convbH_x 3 x 3, 1024 X 3 3 x 3, 1024 X 3 3 x 3, 1024 X 3
1 x 1, 2048, 1 x 1, 2048, 1 x 1, 2048,

design will be introduced in the first part. The experiment is set to evaluate our
model in the second part.

3.3 Backbone Model Design

In this study, we propose an improved object detection backbone by using the
deep feature pyramid network (DFPN) method which can enhance the expression
of feature maps. There are a number of powerful backbones based on Faster
RCNN and Mask RCNN with high performance, such as ResNet, RTesNeXt,
and VGGNet. In this section, we first describe our backbone design and the
two frameworks that are used, Faster RCNN and Mask RCNN respectively. Our
backbone construction is based on ResNeXt that uses a parallel structure with
32 groups of the identical blocks of ResNet to construct its block.

The structure of ResNeXt50 and ResNeXt101 are presented in Table 3. The
main difference between these two CNNs is the convj_z layer. While ResNeXt50
uses 6 sequential blocks to extract features, ResNeXt101 uses a deeper block of
23 layers in the conv4_z layer. As we discussed in the preliminary work, that
leads to the relative lower mAP as some small and unnoticed objects may not
be captured by the extracted features.

The structure of our proposed backbone is also presented in Table 3 along-
side with ResNeXt50 and ResNeXt101. We name it as ResNeXt101S. The major
difference is the splitting of the conv4_z layer into two sub-layers. They are
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conv4_x_6 layer and conv4_x_17 layer respectively. The first sub-layer consists
of 6 blocks of ResNeXt, while the second sub-layer is composed of 17 blocks of
ResNeXt. As for the structure of each block, the same set of output channels is
still maintained. They all behave as blocks of convj_z of ResNeXt101 and are
grouped by 32 parallel paths. A diagram of the proposed ResNeXt101 backbone

Input N
. ‘ final feat
- ﬁ/ b ﬁ . —

intermediate features
ResNeXt101

Input -
: # final features
ﬁ;“—s r o ﬁ .

intermediate features
ResNeXt101S

i

i

Fig.2. Two Backbones: Top: ResNeXt101 with FPN. Bottom: ResNeXt101S with
DFPN.

can be seen in Figure 2. Other than the splitting middle layer, a new Deep Fea-
ture Pyramid Network (DFPN) is also proposed to replace the region proposal
network. It not only takes features from the basic layers of ResNeXt101S, but
also takes features from the inner layer of conv/_z as shown in the figure. By
using a 5-layer top-down architecture through the entire ResNeXt101S CNN,
it extracts and generates a feature pyramid from basic layers and inner layers
include conv2_x, convd_x, conv4_z_6 layer, convj_z_17 layer, and convi_z. The
features are extracted from each level of the feature pyramid to contribute to-
wards the feature maps in which predictions are made at all levels. The aim is to
compensate for lost features and to enable more prominent features to be cap-
tured. Based on ResNeXt101S with DFPN, our backbone is adapted into both
Faster RCNN and Mask RCNN frameworks.

With Faster RCNN: while the original Faster RCNN model using the RoIPool
method and applying VGG16 as the backbone, we introduce our backbone based
on the original Faster RCNN framework, but applying RolAlign for pooling,
which has been shown of being able to increase mAp in Mask RCNN.

The Anchor Generator as the top component of region proposal network
(RPN) is used to generate a number of boxes (Anchors) to detect target objects
in the image that the Anchor Box size in RPN can be associated with the input
image size, thus we set the size with this equation:

area(z) = {(0'271.’”)2 i=0,1,2,3,4 (1)
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For the different input image sizes, we design different object detection with
size-specific anchor boxes respectively, then apply for training and testing.

With Mask RCNN: while the original Mask RCNN model using ResNeXt-
101 with FPN as a backbone to achieve state-of-the-art mAP performance, we
introduce our proposed backbone on the original Mask RCNN Framework, but
set the Anchor Box size also using the Equation (1) shown above.

4 Experiments and Results

4.1 Experiment Settings

Experiments are set to verify and evaluate the performance of our proposed
ResNeXt + DFPN backbone. During the training, each batch has 2 images in
one GPU. The Adadelta algorithm for optimization is used with the learning
rate of 0.3, which is decreased by 5 at the 30 iterations [29]. A coefficient of 0.9
is used. For each model, we train with one NVIDIA Tesla V100 GPU and select
the results with the best bounding box AP value.

Firstly we compare the performances of object detection models on three-
class datasets under 64 x 64 resolution, similar to the experiments in the pre-
liminary work. Our ResNeXt101S + DFPN backbone with the backbones which
perform quite well in the preliminary work include VGGNet16, ResNet + FPN
and ResNeXt + FPN. All backbones are combined with Fater RCNN and Mask
RCNN in the experiments by training with 64 x 64 training dataset and test-
ing in 64 x 64 validation dataset. The detection accuracy is measured via the
bonding box mAP (IoU = 0.50) value over three class datasets. As the Mask
RCNN framework can give better detection ability than Faster RCNN due to its
more informed learning style, we adopt the Mask RCNN framework to evaluate
various backbones in terms of model size and detection accuracy.

In the second stage of experiments we investigated the effectiveness of our
ResNeXt101S + DFPN backbone with Mask RCNN on three class datasets
under various image resolutions. That includes 64 x 64, 128 x 128, 256 x 256,
512 x 512, and 1024 x 1024. Since the maximum resolution of original images
is 640, we also test with the size of 640 x 640. We compare our backbone with
ResNeXt50 + FPN and ResNeXt101 + FPN backbones. The performances are
measured via bonding box mAP (IoU = 0.50) value over three class datasets.

The results are presented in the following two subsections. To compare the
performance of our model with others, VGGNet16, ResNet50 models, ResNeXt
models are also included.

4.2 Object Detection with low-resolution images

While testing with “rectangle” class dataset, “convex polygon” class dataset,
and “round” class dataset under 64 x 64 image resolution, Table 4 presents the
boding box mAP (IoU = 0.50) value of the object detection results.
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Table 4. Bounding box mAP (IoU = 0.50) value (%) of object detection results on
dataset under 64 x 64 resolution. The experiment result of VGGNet16, ResNet + FPN,
ResNeXt + FPN, and ResNeXt101S + DFPN backbones with Faster RCNN and Mask
RCNN frameworks.

Backbone Faster RCNN|Mask RCNN
VGGNet16 21.2 21.5
ResNet50 + FPN 30.8 31.7
ResNet101 + FPN 30.6 32.1
ResNet152 + FPN 31.7 31.6
ResNeXt50 + FPN 32.5 33.4
ResNeXt101 + FPN 31.4 32.2
ResNeXt101S + DFPN (ours) 33 33.9

As the Faster RCNN first proposed in 2015 using VGGNet16 achieves 21.2
mAP testing accuracy, Mask RCNN proposed in 2017 using ResNeXt101 with
FPN with the detection accuracy increases to 32.2. Rather than testing on high-
resolution images as in previous papers, we apply low-resolution images. It can
be seen that ResNeXt50 with FPN performs better than ResNeXt101 with FPN
in both RCNN frameworks. While ResNeXt50 with FPN achieves 32.5 mAP
in Faster RCNN and 33.4 mAP in Mask RCNN. The proposed new backbone,
ResNeXt101S with DFPN, actually increases 0.5 mAP value higher than them
in both Faster RCNN and Mask RCNN frameworks.

The experiment results of bounding box mAP value of object detection on the
dataset is presented in Table 5. That result shows DFPN used in ResNeXt101S
is beneficial in terms of raising detection accuracy in low-resolution images. That
observation verifies the analysis that ResNeXt101 does not give better perfor-
mance than ResNeXt50 in low-resolution images because its deeper convolutional
neural network structure is less effective in capturing features.

By splitting In this way, it increases 1.7 mAp point of detection accuracy to
33.9 compare with the original Mask RCNN model which uses ResNeXt101 with
FPN as the backbone. While ResNeXt101S with DFPN in the Mask RCNN
framework obtains the best mAP result in bounding box object detection in
low-resolution images, the model size of it is very close to the ResNeXt101 with
FPN. Compared with the model size of 430 MB of ResNeXt101 with FPN, our
ResNeXt101S with DFPN is just 10 MB larger.

4.3 Object detection with various resolutions

As ResNeXt101S with DFPN performed quite well in low-resolution images,
we here evaluate whether it is still superior to others in different resolutions of
images. The resolutions for test include 64 x 64, 128 x 128, 256 x 256, 512 x 512,
640 x 640, and 1024 x 1024.

Table 5 shows the results. Under the resolution of 64 x 64 and 128 x 128,
ResNeXt101 has the worst result among three backbones, while ResNeXt101
performs slightly better than ResNeXt50, which means by using DFPN with
ResNeXt101S in Mask RCNN, the model does improve feature quality in low-
resolution images. For the other resolutions that are higher than 128 x 128,
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Table 5. Bounding box mAP (foU = 0.50) value (%) of object detection results
on three class datasets under dataset-specific resolutions. The experiment result of
ResNeXt50 + FPN, ResNeXt101 4+ FPN, and ResNeXt101S + DFPN backbones with
Mask RCNN frameworks.

Resolution Re‘sNeXtSO Re§NeXt101 ‘ResNeXt101S
with FPN | with FPN |with DFPN (ours)
64 x 64 33.4 32.2 33.9
128 x 128 42.3 41.5 42.7
256 x 256 54.1 55.4 55.9
512 x 512 58.9 60.2 61
640 x 640 61.1 63.6 63.9
1024 x 1024 63.8 65.1 65.9

ResNeXt50 does not have better detection accuracy than ResNeXt101, which
shows the advantage of a deep convolutional neural network. Since under the
sufficient resolution condition, a deeper CNN extracts the shape of the feature
with more distinct expression than others. In this case, using ResNeXt101 +
FPN as the backbone is possible to achieve a better object detection performance
than using ResNeXt50 + FPN. While ResNeXt101 + FPN performs quite well
in high resolution, ResNeXt101S 4+ DFPN can still achieve higher mAP result
with slightly improvement in 256 x 256, 512 x 512, 640 x 640, and 1024 x 1024.
Such an outcome indicates using ResNeXt101S with DFPN can still improve
feature quality at high-resolution input.

60 61

0.50) %

55 55.9

MAP (loU
-
&

42.7

64x64 128x128 256x256 512x512 1024x1024

Resolution
Mask RCNN + ResNeXt101S + DFPN

Fig. 3. Bounding box mAP (IoU = 0.50) value (%) vs. Dataset-specific resolutions.
The experiment result of ResNeXt101S + DFPN backbone with Mask RCNN frame-
works.

Overall by using ResNeXt101S with DFPN in Mask RCNN, our model achieved
the best object detection performance for various resolutions of input images.
An interesting observation that worth mentioning is comparing the performance
under 640 x 640 with the performance under 1024 x 1024. While we upscale the
original image with a maximum image size of 640 to a higher 1024, the object
detection accuracy still increases with 2.0 mAP points rather than remain the
same as 640 x 640 images despite the fact that no extra information was added
in the up-scaling process.
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Table 6. Bounding box AP (IoU = 0.50) value (%) of object detection results under
1024 x 1024 resolution on Rectangle class, Convex-polygon class and Round object class.
The experiment result of ResNeXt50 + FPN, ResNeXt101 4+ FPN, and ResNeXt101S
+ DFPN backbones with Mask RCNN frameworks.

Rectangle|Convex-polygon|Round|Average

Backbone Class Class Class | mAP
ResNeXt50 + FPN 80.9 80 30.5 63.8
ResNeXt101 + FPN 81.7 81.2 32.4 65.1

ResNeXt101S + DFPN (ours) 82.6 82.1 33.1 65.9

Detected "Rectangle” Object Detected "Convex-polygon" Object Detected "Round" Object

Fig. 4. Example of prediction result.

Figure 3 shows the tendency graph of detection performance in relation
with various resolutions. We collect the data with the sequence of the multiple
of image resolution which contains the resolution include 64 x 64, 128 x 128, 256 x
256, 512x 512, and 1024 x 1024. With increasing resolution, the accuracy of object
detection increases. We can observe that the accuracy increasing rate is fastest
from 128 x 128 to 256 x 256, and then become slow down in the 512 x 512 and
1024 x 1024. As a larger image needs more time-consuming and computational-
consuming, an image resolution as small as possible is desirable. Therefore, 256 x
256 could be selected as the optimal resolution for object detection with good
object detection accuracy and high efficiency.

For further investigation, we present the analysis of detection performance
per class in Table 6. The table shows the mAPs of all three models tested under
images of 1024 x 1024 in this study. As can be seen, our proposed ResNeXt101S
+ DFPN backbone performed best in all three classes. Its good performance
is independent of class type. In terms of the classes, “Rectangle” objects and
“Convex-polygon” objects can be much more accurately detected than “Round”
objects. That is the case for all three models. The possible explanation is that
round objects may be confused with non-target round objects. Our further study
will address that to improve performance. Nevertheless, such results confirm that
the good performance of our proposed backbone is not random. Examples of
detected objects are illustrated in Figure 4. They represent three categories of
objects from the COCO dataset. The bounding boxes (in red) are the output
from the Mask RCNN model using our proposed backbone. These boxes fit with
the target object tightly showing the good performance of the detection model.
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5 Conclusions

In this paper, we proposed an improved backbone for object detection with an
innovative method that combines advantages from both backbones. The aim is
to improve feature quality for deep layers. From experiments, it can be seen
that deep models may not extract high-quality features if the layers are deep.
The improved backbone split the feature layers and re-direct intermediate fea-
tures to a proposed deep feature pyramid network (DFPN) for feature aggrega-
tion. This backbone can be integrated into leading frameworks including Faster
RCNN and Mask RCNN and is applicable for handling a range of different image
resolutions. With the improved backbone, better detection performance can be
achieved on different resolutions comparing to state-of-the-art models. In conclu-
sion, our method improves the object detection performance without increasing
the number of parameters and computational complexity distinctly. The pro-
posed backbone is beneficial in improving feature quality for object detection.
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