
Forecasting Electricity Prices: Autoregressive
Hybrid Nearest Neighbors (ARHNN) method

Weronika Nitka1[0000−0002−3360−4260], Tomasz Serafin1[0000−0003−0518−9917], and
Dimitrios Sotiros1?[0000−0002−9995−3906]

Department of Operations Research and Business Intelligence,
Faculty of Computer Science and Management,

Wroc law University of Science and Technology, 50-370 Wroc law, Poland
dimitrios.sotiros@pwr.edu.pl

Abstract. The ongoing reshape of electricity markets has significantly
stimulated electricity trading. Limitations in storing electricity as well
as on-the-fly changes in demand and supply dynamics, have led price
forecasts to be a fundamental aspect of traders’ economic stability and
growth. In this perspective, there is a broad literature that focuses on
developing methods and techniques to forecast electricity prices. In this
paper, we develop a new hybrid method, called ARHNN, for electric-
ity price forecasting (EPF) in day-ahead markets. A well performing
autoregressive model, with exogenous variables, is the main forecasting
instrument in our method. Contrarily to the traditional statistical ap-
proaches, in which the calibration sample consists of the most recent
and successive observations, we employ the k-nearest neighbors (k-NN)
instance-based learning algorithm and we select the calibration sample
based on a similarity (distance) measure over a subset of the autore-
gressive model’s variables. The optimal levels of the k-NN parameter
are identified during the validation period in a way that the forecasting
error is minimized. We apply our method in the EPEX SPOT market
in Germany. The results reveal a significant improvement in accuracy
compared to commonly used approaches.

Keywords: Electricity price forecasting · Day-ahead market · ARX ·
k-nearest neighbors.

1 Introduction

Electricity markets have witnessed significant changes over the last decades.
Their deregulation, followed by the emergence of electrical power exchanges such
as EPEX SPOT, OMIE and Nord Pool in Europe, or PJM in the USA, allowed
for competitive electricity trading [23]. Electrical power exchanges usually consist
of several markets. The market with the biggest volume of trade is the day-ahead
(spot) market, which allows the traders to place bids and offers the day before the
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physical delivery of electricity. The day-ahead market is usually supplemented
by intraday and balancing markets, which allow trading until a few minutes
before delivery and target at providing more accurate offers. However, this is
often associated with paying significant balancing fees.

Notably, electricity market clearing prices, defined by the supply and the
demand curve, are characterized by high volatility. The cost of storing electricity
at large scales as well as the transition of power generation from conventional to
renewable sources, permeated with uncertainty in the production levels, lead to
fluctuations in the supply. On the other hand, demand may vary on an hourly
(peak and off-peak hours) and daily (weekends, weekdays and festivities) basis.
These factors, along with the requirement of supply and demand to be precisely
balanced in the power grid, lead to highly volatile prices in the electricity markets
which can undergo extreme changes within a span of a single day.

Traders, ideally, aim to maximize their profit as well as to minimize the
financial risk by selecting the most appropriate strategy in an imperfect market,
where there is incomplete information. Given the high level of price volatility
and the limitations in storing electricity, the selection of a wrong strategy, based
on price misinformation, may lead to economic losses or even bankruptcy. On
the contrary, utilizing accurate forecasts may increase profits or reduce the risk
of economic losses [9, 14].

In this line of thought, there is a wide literature which focuses on providing
accurate day-ahead electricity price forecasts. Extended literature reviews are
provided in [1, 21, 23]. Two of the prominent broad classes of methods provided
in the literature rely either on statistical approaches or on machine learning
techniques. Statistical approaches utilize linear regression models or linear au-
toregressive models based on a set of variables related to observed prices and
other exogenous variables (load, wind, solar, temperature) that may affect price
levels. Differences in the implementation of the autoregressive models can be also
identified in terms of the calibration window length, which can be predefined
or estimated via more advanced econometric techniques [4, 11, 12]. However, in
these cases, the calibration sample consists of the most recent and successive ob-
servations. Methods that rely on machine learning employ a variety of techniques
such as artificial neural networks [24], support vector machines [27], clustering
algorithms [22] or a combination of them [17]. It is worthy to mention that a
hybrid approach that employs statistical and machine learning techniques has
been also proposed in the literature. Specifically, in [18] three clustering algo-
rithms and an autoregressive lag model were employed to predict consumers’
energy consumption in a simulation suite. However, this approach was tested on
simulated data.

In this paper we build on the bridge between the two aforementioned classes
of methods and we propose a new hybrid method, called autoregressive hybrid
nearest neighbors (ARHNN), for forecasting spot electricity prices. We generate
one-day-ahead forecasts using a linear ARX (autoregressive with exogenous vari-
ables) model with parameters calibrated on samples selected with the k-nearest
neighbors (k-NN) algorithm. ARX models are well-established in electricity price
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forecasting (EPF), as noted in [10, 23]. The k-nearest neighbors algorithm has
been found to be successful in the field of electricity market forecasts, mainly
in forecasting electricity price and load [2, 3, 8, 13, 19, 26] and renewable energy
sources (RES) generation [25]. The proposed method is applied to the EPEX
SPOT market in Germany. The results show a significant improvement in accu-
racy compared to commonly used benchmark approaches, while low increase in
the computational load is ensured.

The rest of this paper unfolds as follows. Section 2 describes the most im-
portant features of the data used in this analysis. Section 3 provides an in-depth
explanation of the proposed method. Section 4 illustrates the results of the pro-
posed method applied to the EPEX SPOT data and provides comparison with
commonly used benchmark models. Finally, conclusions are drawn in Section 5.

2 Data

To illustrate our method, we use data describing the day-ahead electricity prices
in the EPEX SPOT market in Germany. As described in the Introduction, the
day-ahead market is the most important market in terms of traded volume. The
dataset, published by the transmission system operator (TSO), comprises four
variables: the electricity price in EUR/MWh and the corresponding official TSO
forecasts of total electrical load, wind energy generation and photovoltaic energy
generation, expressed in GWh.

The dataset spans six full years, from January 2015 until December 2020,
with hourly data (see Figure 1). To evaluate the performance of the proposed
algorithm, the data is divided into three periods with lengths of approximately
two years each. The first 728-day period is reserved for the initial calibration
window. Then, the middle period, of the same length, is utilized for validation
and tuning the hyperparameters of the model as described in Subsection 3.2.
Finally, the procedure is tested on the last period with length equal to 736 days.

The time series of the price and the load forecasts, as well as the division into
calibration, validation and testing periods, are depicted in Figure 1. It can be
seen that the spot prices are indeed highly volatile, with frequent upward and
downward spikes multiple times greater in magnitude than the average price
range. However, load is relatively predictable, exhibiting both weekly and yearly
seasonality, which needs to be addressed by the predictive model.

3 Methods and algorithms

As shown by numerous studies in the EPF [7, 14], the selection of the calibration
sample impacts the overall forecasting accuracy of the autoregressive model.
While the majority of authors consider the longest possible portion of data for
the model calibration, averaging predictions obtained from calibration samples
of different lengths [16] or utilizing more sophisticated statistical methods [15]
allows for the significant reduction of forecasting errors. In this paper, we propose
a new method for the selection of the calibration sample, based on the k-nearest
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Fig. 1: Time series plot of the electricity spot prices (upper panel) and TSO load
forecast (lower panel) from the EPEX SPOT market. Dashed lines indicate the
split into calibration, validation and testing periods.

neighbors algorithm. The aforementioned methods rely on the time dimension
to select the calibration sample, i.e. the most recent successive observations
compose the calibration sample. On the contrary, in our method we define the
calibration sample on the basis of a similarity measure over a set of features.

3.1 Predictive model

To predict the spot prices in hour h of day d+ 1 we use an expert ARX model
with a specification well-established in the electricity price forecasting literature
[7, 20]. Due to the idiosyncratic nature of the electricity market, every hour
of the day is treated as a distinct market product and separate forecasts are
implemented for each hour, i.e. predicting the prices for the entire day d + 1
requires estimating 24 independent parameter sets. The models for every hour
have an identical specification, incorporating an autoregressive structure with
lags corresponding to two preceding days and a week, notated as Pd+1−p,h where
p ∈ {1, 2, 7}. The price dynamics are further captured by including the minimal
and the maximal price from the previous day (respectively Pd,min and Pd,max)
as well as that day’s price in hour 24 (Pd,24) – the previous day’s last known
price.
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Finally, the model incorporates the publicly available forecasts of three exoge-
nous variables relevant to the price levels: total electrical load (L̂), wind energy
generation (Ŵ ) and photovoltaic energy generation (Ŝ). The complete model
takes the form

Pd+1,h = αhDd+1 +
∑

p∈{1,2,7}

βh,pPd+1−p,h︸ ︷︷ ︸
AR component

+ θh,1Pd,min + θh,2Pd,max︸ ︷︷ ︸
Daily statistics

+ θh,3Pd,24︸ ︷︷ ︸
Last known price

+ θh,4L̂d+1,h + θh,5Ŵd+1,h + θh,6Ŝd+1,h︸ ︷︷ ︸
Exogenous variables

+εd+1,h,

(1)

where Dd+1 is the 1×7 vector of dummy variables representing days of the week
and εd+1,h is the Gaussian white noise. Henceforth, by P̂d+1,h(τ) we denote the
prediction obtained from model (1) calibrated on a sample containing the τ most
recent observations.

3.2 ARHNN calibration sample selection

The k-Nearest Neighbors is an instance-based learning algorithm that can be
used either for classification or regression. In the former case, an observation is
assigned to the most common class label shared by its k-nearest neighbors. In
the second case, the property value for an observation derives from the average
of the k-nearest neighbors’ values. In both cases, a neighbor weighting function
can be employed [6].

To explain the applicability of the k-NN algorithm in our case study and the
differentiation of our method, suppose that at day d we want to forecast the
electricity price for the day ahead (day d+1). We denote by xd the vector of the
explanatory variables from model (1) for a given day d, after omitting dummy
variables, 2-day and 7-day lagged prices and random noise. Within the matrix
Xd+1 = (xd−726; . . . ;xd+1), it is evident that the most recent information we
possess, xd+1, provides the most accurate outlook at the current market state,
i.e. prices from previous days as well as forecasts for day d + 1. Notably, the
proposed statistical methods in the literature, rely on this assumption and they
further extend it. Specifically, they assume that the most recent observations will
provide the most accurate forecast and thus, they should compose the calibration
sample. However, in case structural breaks exist among the last observations,
the selected calibration sample will lead to a decreased forecasting accuracy. In
addition, this approach relies exclusively on the last observations (in terms of
time) and does not exploit information from other past data.

The main idea of our method is to identify past observations that resemble
xd+1 as closely as possible and use them to estimate the parameters of the fore-
casting model. To this end, we employ the k-NN algorithm to select a calibration
sample for the ARX model (1) consisting of the k-nearest neighbors of the point
xd+1 (see Figure 2), in terms of the Euclidean distance. In a sense, we invert
the rationale of the k-NN method - instead of classifying the latest observation

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_24

https://dx.doi.org/10.1007/978-3-030-77970-2_24


6 W. Nitka et al.

based on its neighboring points, we assume that the closest neighbors (in terms
of the distance, not time) of xd+1 belong to the same market “regime”.

Analogously to the notation in Section 3.1, we denote the price prediction
for day d + 1 and hour h, obtained by calibrating the forecasting model (1) on
the sample consisting of k closest observations, by P̂ ∗d+1,h(k). Note that for the
clarity of notation, forecasts corresponding to the ARHNN method are marked
with an asterisk.

Fig. 2: The optimal (i.e. producing the lowest absolute prediction error) selection
of the calibration sample (k̄i = 181) based on the matrix Xd+1 for a specific day
(d + 1). The upper panel illustrates the sample selection, presented on three
key variables, i.e. preceding day’s price as well as forecasts of load and wind
generation; while the lower panel depicts the corresponding selection in the time
dimension. The most recent observation is marked with a red dot, while the
observations selected for the model calibration are depicted with blue points.
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Obviously, the choice of the parameter k has a direct impact on the forecast-
ing accuracy of the model. Disentangling its effects, is one of the main challenges
that we address in the paper. As discussed in Section 2, in the validation pe-
riod, we use the 728-day rolling window to identify the optimal values of the k
parameter, which is responsible for the number of observations in the calibra-
tion sample. For each of the 728 days in the validation period, the procedure
identifies (ex-post) the optimal value (i.e. the one that produced the lowest ab-
solute prediction error for a certain day; see Figures 2, 3) of the parameter, k̄i,
i = 1, . . . , 728. Next, in the evaluation (testing) procedure, instead of selecting
only one value of k for each day, we consider 728 calibration samples, based on
the set of past optimal values (k̄1, . . . , k̄728). In such way, we obtain 728 price

predictions for day d+1, i.e.
(
P̂ ∗d+1,h(k̄1), . . . , P̂ ∗d+1,h(k̄728)

)
. Eventually, inspired

by [16], we obtain the final price prediction for day d + 1 and hour h from the
average of these forecasts:

P̂d+1,h =
1

728

728∑
i=1

P̂ ∗d+1,h(k̄i). (2)

Notably, there may be cases where the values of k̄i, i = 1, . . . , 728 coincide,
i.e. k̄i = k̄j for i 6= j. Therefore, the above expression is translated to the
weighted average of forecasts calibrated to different samples, where the weight
corresponding to a certain prediction P̂ ∗d+1,h(k̄i) depicts the relative frequency

of k̄i in (k̄1, . . . , k̄728). This can be interpreted as a weighting function which
reflects the “relative significance” of the k̄i values.

3.3 Benchmark approaches

We evaluate the effectiveness of selecting the calibration period with the pro-
posed ARHNN procedure by comparing it to a number of literature benchmarks.
While all of them use Model (1) for computing the forecasts themselves, they dif-
fer in the selection of the calibration sample and in the forecasts post-processing.
The first group of benchmark approaches provides forecasts obtained by using
a single calibration window length throughout the entire test period. The cal-
ibration windows include from 56 to 728 days of the most recent data up to
the moment of forecasting. The second group utilizes two additional approaches
following [7]: the arithmetic mean of all the forecasts within the first group (673
predictions obtained from calibration windows of different lengths), and the av-
erage of forecasts from six hand-picked calibration windows: three short ones
(56, 84, 112 days) and three long ones (714, 721, 728 days).

We assume the following convention to notate the aforementioned benchmark
methods: the single-length windows with length τ are denoted as Win(τ). The
forecast averages are named using the MATLAB sequence convention, respec-
tively becoming Av(56:728) and Av(56:28:112, 714:7:728).
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Fig. 3: Histogram of the optimal calibration sample lengths within the validation
period (728 calibration sample lengths in total) for hour 18.

4 Results

We evaluate the accuracy of the forecasts obtained from different approaches
with the use of the root mean squared error (RMSE). The reported error is
calculated across all hours and days of the 736-day out-of-sample period. The
results are presented in Figure 4 and Table 1. The performance of single cali-
bration window benchmarks (i.e. models trained on samples comprising a fixed
amount of most recent observations) is presented with gray dots. In this ap-
proach, although the average error generally diminishes with the increase of
the calibration window length τ and the longest window turns out to be the
best choice, the decrease is not monotonic as we may expect. As shown by [16],
for certain datasets, the error may even increase alongside with the calibration
window length.

Table 1: The RMSE values of the selected benchmarks and the ARHNN method.
Method RMSE

Win(364) 8.4443
Win(728) 8.2860

Av(56:728) 8.0584
Av(56:28:112, 714:7:728) 8.0286

ARHNN 7.8604
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Fig. 4: The RMSE values as a function of calibration window length for the
benchmark approaches and the ARHNN method.

As can be seen from Figure 4, the ARHNN method as well as the averaging
schemes outperform every approach based on a single, fixed calibration window
length in terms of RMSE. Methods based on forecasts averaging, Av(56:728)
and Av(56:28:112, 714:7:728), managed to outperform the predictive accuracy
of the longest, 728-day calibration window, approximately by 3%. The fore-
casts obtained from the introduced ARHNN method exhibit over 5% lower er-
ror comparing to the best performing single calibration window length. The
method also gains over 2% in terms of the forecasting accuracy compared to the
well-performing literature benchmarks Av(56:728) and Av(56:28:112, 714:7:728).
Since these results are not sufficient for determining the statistical significance of
the difference between forecasts obtained from different approaches, we decided
to use the Diebold and Mariano (DM) [5] test. First, for each pair of methods X
and Y , we create a vector of errors for each day of the out-of-sample period. Here
we consider two different perspectives - univariate and multivariate as classified
by [28]. In the first one (multivariate), we consider 24-dimensional error vectors
for each day:

∆X,Y,d = ||ε̄X,d|| − ||ε̄Y,d||, (3)

where ε̄X,d =
√

1
24

∑24
h=1 ε

2
X,d,h and εX,d,h is the error of forecasts obtained with

method X for day d and hour h. In the second approach (univariate), instead
of considering 24 hours jointly, we are looking at each of them separately. More
precisely:

∆X,Y,d,h = |εX,d,h| − |εX,d,h|. (4)

For each pair of approaches, we compute the p-value of the DM test with null
hypothesis H0: E(∆X,Y,d) ≤ 0 (or H0: E(∆X,Y,d,h) ≤ 0 in case of the univariate

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_24

https://dx.doi.org/10.1007/978-3-030-77970-2_24


10 W. Nitka et al.

approach) and additionally perform a complementary test with the reverse null
hypothesis, HR

0 : E(∆X,Y,d) ≥ 0 (or HR
0 : E(∆X,Y,d,h) ≥ 0).

In Figure 5 and Figure 6, we present the p-values of the test. We use a
heatmap to indicate the span of p-values. The closer they are to zero (dark
green), the more significant is the difference between forecasts obtained with
the approach from X-axis (superior) and predictions from the method in the
Y-axis (inferior) [7, 16, 15]. The “chessboard” in Figure 5 corresponds to the re-
sults of the multivariate approach, considering 24-dimensional error vectors (see
Equation 3). It turns out, that forecasts from the ARHNN method were able
to significantly outperform predictions from nearly all benchmarks. The well-
performing averaging scheme Av(56:28:112, 714:7:728) was neither significantly
worse nor better than the proposed approach. Two “chessboards” in Figure 6,
correspond to the results of the univariate DM test for two exemplary hours.
The selected Hour 9 and Hour 15 correspond to the worst and the best perfor-
mance of the ARHNN method across all hours, respectively. For Hour 9, the
forecasts based on the ARHNN approach were not able to statistically outper-
form predictions from any other method. Additionally, they are outperformed
by the forecasts based on the Av(56:728) averaging scheme. When it comes to
the results for Hour 15, the predictions from the proposed ARHNN method sig-
nificantly outperform forecasts from all benchmarks, with p-values of the DM
test close to zero. In general, the performance of the ARHNN approach across
24 hours of the day is shown in Table 2. The columns, corresponding to 24 hours
are marked with five different colors, each of them representing a certain result
of the DM test:

– Sharp green (Hours 2, 6, 13, 14, 15, 16, 17) - forecasts from the ARHNN
method significantly outperform predictions from all benchmarks and are
not outperformed by any of them,

– Green (Hours 1, 3, 4, 5) - forecasts from the ARHNN method significantly
outperform predictions from three out of four benchmarks and are not out-
performed by any of them,

– Yellow (Hours 7, 8, 10, 11, 12, 18) - forecasts from the ARHNN method
significantly outperform predictions from two out of four benchmarks and
are not outperformed by any of them,

– Orange (Hours 22, 23, 24) - forecasts from the ARHNN method signif-
icantly outperform predictions from two out of four benchmarks and are
outperformed by one of them,

– Sharp orange (Hour 19) - forecasts from the ARHNN method do not sig-
nificantly outperform predictions from any benchmark and are not outper-
formed by any of them,

– Red (Hours 9, 20, 21) - forecasts from the ARHNN method do not signif-
icantly outperform predictions from any benchmark and are outperformed
by one of them.

Looking at the results of the Diebold-Mariano test it can be observed that
forecasts from the ARHNN approach exhibit very satisfactory predictive ac-
curacy compared to forecasts from the selected benchmarks. For eleven hours,
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Table 2: Results of the statistical significance test between forecasts from the
ARHNN approach and the selected benchmarks for all 24 hours. Each color
represents a certain result of the DM test.

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ARHNN forecasts were able to significantly outperform predictions from at least
three out of four benchmarks and, for twenty hours, at least two out of four. Al-
though the forecasts exhibit the worst performance for hours 9, 19, 20 and 21,
they were significantly outperformed by at most one benchmark approach and,
in the remaining twenty one hours of the day, by none of them.

5 Conclusions and discussion

In this paper we introduced a hybrid method for electricity price forecasting in
day ahead markets. We employed a linear autoregressive model, with exogenous

Fig. 5: Results of the multivariate approach to the pairwise Diebold-Mariano test
between ARHNN method and the selected benchmarks. We illustrate the range
of p-values using a heatmap: green squares indicate a statistically significant
superiority of the forecasts from the method on the X-axis over the ones from
the method on the Y-axis.
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Fig. 6: Sample results of the univariate approach to the pairwise Diebold-Mariano
test between ARHNN model and the selected benchmarks. We illustrate the
range of p-values using a heatmap: green squares indicate a statistically signif-
icant superiority of the forecasts from the method on the X-axis over the ones
from the method on the Y-axis.

variables (total electrical load, wind energy generation and photovoltaic energy
generation), as the underlying instrument for forecasts. Our novelty lies in the
selection of the calibration sample which is achieved via a machine learning al-
gorithm. Specifically, we utilized the k-NN instance-based learning algorithm to
select the calibration sample based on a similarity (distance) measure between
the most recent information and past observations, over a subset of the autore-
gressive model’s variables. Our aim was to identify past observations that belong
to the same “regime” with the latest available information.

The advantage of our method is therefore twofold. The selection of the cali-
bration sample relies on a similarity measure over a set of variables rather than
on the time dimension (i.e. to include only the most recent observations). With
this type of selection, homogeneity within the calibration sample is secured and
structural breaks are avoided. In addition, information from past observations
is exploited and consequently, the selected calibration sample is expected to
provide more accurate forecasts.

We applied our method on the EPEX SPOT market and we provided com-
parison with commonly used literature benchmarks. The results show that our
proposed method achieves a statistically significant reduction in the forecast-
ing error compared to the rest of the approaches, while remaining highly inter-
pretable and meaningful. The accuracy of the proposed method in other mar-

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77970-2_24

https://dx.doi.org/10.1007/978-3-030-77970-2_24


Forecasting Electricity Prices: ARHNN method 13

kets, the adoption of other machine learning techniques as well as comparison
with other methods relying exclusively on them, are subjects for future research.
Nevertheless, our findings signify the importance and benefits of interdisciplinary
research in this field.
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