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Abstract. In this paper, we study a system of multidimensional cou-
pled reflected backward stochastic differential equations (RBSDEs) with
interconnected generators and barriers and mixed reflections, i.e. oblique
and normal reflections. This system of equations is arising in the con-
text of optimal switching problem when both sides of the balance sheet
are considered. This problem incorporates both the action of switching
between investment modes and the action of abandoning the investment
project before its maturity once it becomes unprofitable. Pricing such
real options (switch option and abandon option) is equivalent to solve
the system of coupled RBSDEs considered in the paper, for which we
show the existence of a continuous adapted minimal solution via a Pi-
card iteration method.

Keywords: Real options· Optimal switching· Balance sheet· Trade-off
strategies· Merger and acquisition· Backward SDEs· Mixed reflections.

1 Introduction

Optimal switching problem (OSP) has attracted a lot of interest in the recent
years (see among others [1,2,5,6,7,11,12]), since it can be related to many practi-
cal applications, for example the problem of valuation investment opportunities.
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2 R. Belfadli et al.

OSP consists in finding an optimal management strategy for a production com-
pany that can run in m, m ≥ 2, different modes . A management strategy δ
is a combination of a nondecreasing sequence of stopping times (τn)n≥0, and a
sequence of random variables (εn)n≥0 taking values in the set of possible produc-
tion modes Λ = {1, . . . ,m}. At time τn, in order to maximize the profit of the
company, the manager decides to switch the production from the current mode
εn−1 to εn. When the production of the company is working under a strategy
δ, it generates a gain equal to J(δ). The OSP amounts to finding an optimal
management strategy δ∗ such that J(δ∗) = sup

δ
J(δ). The OSP is connected with

multidimensional RBSDEs with oblique reflections and interconnected barriers.

One dimensional BSDEs with normal reflections were first introduced by [10].
The multidimensional case was studied by Gegout-Petit and Pardoux [9], and
then further investigated in many other works see e.g. [8,13]. Multidimensional
BSDEs with oblique reflections occurring in the context of OSPs were first
introduced by [12]. They consider RBSDEs with generator taking the form

fi(·, yi· , zi· ) and barrier min
j∈Λ−i

(
yj· + gi,j

)
where gi,j are constant switching costs

and Λ−i = Λ − {i}. Later, Hamadène and Zhang [11] generalized the preced-
ing work by considering general generators and barriers of the following types
fi(·, y1· , . . . , ym· , zi· ) and max

j∈Λ−i
hi,j(., y

j
. ). Xu [17] dealt with the same kind of RB-

SDEs but when the generator, which is discontinuous w.r.t. yi, and the barrier

take respectively the following forms fi(·, yi· , zi· ) and max
j∈Λ−i

(
yj· − gi,j

)
∨Si· . Then,

Aazizi et al. [1] extended the results of [17] to the case of generators and barriers
of the form fi(·, y1· , . . . , ym· , zi· ) and max

j∈Λ−i
hi,j(., y

j
. ) ∨ Si· .

In this paper, we are interested by Balance sheet OSP (BSOSP) which is a
combination between the classical OSP described above and optimal stopping
involving the balance sheet. BSOSP incorporates both the action of switching
between modes and the action of abandoning a project once it becomes unprof-
itable. There are only few papers dealing with BSOSPs. Djehiche and Hamdi [4]
considered the 2-modes case, i.e. Λ = {1, 2}. Their generators are of the form
f+i (·, Y +,i

· , Z+,i
· ), f−i (·, Y −,i· , Z−,i· ) and their barriers of type (Y +,j

. − gi,j(.)) ∨
(Y −,i. −Ci(.)) and (Y −,j. +gi,j(.))∨(Y +,i

. +Bi(.)), where Ci and Bi are switching
costs and j ∈ Λ−i. Recently, the BSOSP multi-modes case was solved by Eddahbi
et al. [5] when the barriers are of the form max

j∈Λ−i
(Y +,j
. − gi,j(.))∨ (Y −,i. +Ci(.))

and Y +,i
. +Bi(.) (see Eddahbi et al. [6] for the mean–field case).

Now, let us describe precisely the problem studied in this paper by in-
troducing some notations. Let T > 0 be a given real number, and (Ω,F ,P)
is a fixed probability space endowed with a d–dimensional Brownian motion
W = (Wt)0≤t≤T . F = (Ft)0≤t≤T is the natural filtration of the Brownian mo-
tion augmented by the P–null sets of F . All the measurability notion will re-
fer to this filtration. The euclidean norm of a vector z ∈ IRd is denoted |z|.
Furthermore, we introduce the following spaces of processes. L2 is the space
of R–valued processes ξ, such that ||ξ||L2 := (E

[
|ξ|2
]
)1/2 < +∞. S2 (resp.
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S2c ) is the set of R–valued adapted and continuous (resp. càdlàg ) processes

(Yt)0≤t≤T such that ||Y ||S2 (resp. ||Y ||S2
c
) :=

(
E

[
sup

0≤t≤T
|Yt|2

])1/2

< +∞.

Md,2 is the set of Rd–valued, progressively measurable processes (Zt)0≤t≤T such

that ||Z||Md,2 :=

(
E
[∫ T

0
|Zs|2ds

])1/2

< +∞. K2 (resp. K2
c) is the set of non-

decreasing processes K, satisfying K0 = 0 and that belong to S2 (resp. S2c ).
Next, to illustrate the BSOSP studied in this paper, let us deal with a con-

crete example. Consider a company that has m modes of production (if m = 3,
minimal, average and maximal production modes). The manager of the company
has two options. A switch option, i.e. in order to maximize its global profit, she
switches the production between the modes depending on their random perfor-
mances but this switching incorporates a cost called switching cost. The manager
has also an abandon option i.e. stop the production once it becomes unprofitable.
More precisely, being in mode i ∈ Λ, one have to switch at time t to another
mode j ∈ Λ−i, once we have that the expected profit Y +,i in this mode falls
below the following barrier

Y +,i
t ≤ S+,i

t := max
j∈Λ−i

hi,j(t, Y
+,j
t ) ∨ (Y −,it + Ci(t)),∀ t ∈ [0, T ], (1)

where hi,j is nonlinear random function (a special case is when hi,j(., y) = y−gi,j ,
where gi,j is a switching cost from mode i to mode j), Y −,i is the expected cost
in mode i, and Ci is the cost incurred when exiting/terminating the production
while in mode i. Since we consider both sides of the balance sheet, the manager
has to switch at time t to another mode j ∈ Λ−i, as soon as the expected cost
in mode i, Y −,i rises above the following barrier

Y −,it ≥ S−,it := Sit ∧
(
Y +,i
t +Bi(t)

)
,∀ t ∈ [0, T ], (2)

where Si(t) is a cost of default (i.e. in this case the project is no longer profitable
and thus leads to the abandon of this latter even before its maturity), and Bi is
the benefit incurred when exiting/terminating the production while in mode i.
It is well known that the BSOSP can be formulated using the following system
of Snell envelopes

Y +,i
t = ess sup

τ≥t
E

[∫ τ

t

f+i (s)ds+ S+,i
τ 1[τ<T ] + ξ+i 1[τ=T ]|Ft

]
, (3)

Y −,it = ess inf
τ≥t

E

[∫ τ

t

f−i (s)ds+ S−,iτ 1[τ<T ] + ξ−i 1[τ=T ]|Ft
]
, (4)

where τ ∈ [0, T ] are F–stopping times which represent the exit times from the
production in mode i, f+i and f−i denote respectively the running profit and
cost per unit time dt and ξ+i and ξ−i are respectively the values at time T of the
profit and the cost yields.
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4 R. Belfadli et al.

The BSOSP consists in showing existence and uniqueness of the processes
(Y +,i, Y −,i)i∈Λ and also proving that the following stopping times are optimal

τ+,i = inf
{
s ≥ t : Y +,i

s = S+,i
s

}
∧ T, and τ−,i = inf

{
s ≥ t : Y −,is = S−,is

}
∧ T.

Since the Snell envelope is strongly connected to RBSDEs, solving the BSOSP
is equivalent to showing existence of continuous solution to the following gen-

eral (sine we take f+i (.) = f+i (s,
−→
Y +
s , Z

+,i
s ) f−i (s) = f−i (s,

−→
Y −s , Z

−,i
s ) where

−→
Y + := (Y +,1, . . . , Y +,m),

−→
Y − := (Y −,1, . . . , Y −,m)) system of BSDEs with

mixed reflections: for i ∈ Λ := {1, . . . ,m}

(S)



Y +,i
t = ξ+i +

∫ T

t

f+i (s,
−→
Y +
s , Z

+,i
s )ds−

∫ T

t

Z+,i
s dWs +K+,i

T −K+,i
t ,

Y +,i
t ≥ S+,i

t , and

∫ T

0

[
Y +,i
s − S+,i

s

]
dK+,i

s = 0, (5)

Y −,it = ξ−i +

∫ T

t

f−i (s,
−→
Y −s , Z

−,i
s )ds−

∫ T

t

Z−,is dWs −K−,iT +K−,it ,

Y −,it ≤ S−,it , and

∫ T

0

[
S−,is − Y −,is

]
dK−,is = 0, (6)

where T is called the time horizon, ξ+i and ξ−i are called the terminal condi-
tions, the random functions f+i (ω, t,−→y , zi) : Ω × [0, T ] × IRm × IRd → IR and
f−i (ω, t,−→y , zi) : Ω × [0, T ] × IRm × IRd → IR are respectively Ft–progressively
measurable for each (−→y , zi), called the generators. hi,j is a real nonlinear random
function, and Ci := (Ci(t))t∈[0,T ], B

i := (Bi(t))t∈[0,T ], and Si := (Si(t))t∈[0,T ]

are previously given (Ft)0≤t≤T –adapted processes with some suitable regularity.

The unknowns are the processes (Y ±,i, Z±,i,K±,i) := (Y ±,it , Z±,it ,K±,it )t∈[0,T ]

which are required to be (Ft)0≤t≤T –adapted. Moreover, K+,i and K−,i are non-
decreasing processes. The second condition in (5) (resp. (6)) says that the first
component Y +,i (resp. Y −,i) of the solution of RBSDE (5) (resp. (6)) is forced
to stay above (resp. below) the barrier S+,i

. (resp. S−,i. ). The role of K+,i (resp.
K−,i) is to push Y +,i (resp. Y −,i) upwards (resp. downwards) in order to keep
it above (resp. below) the respective barrier in a minimal way in the sense of the
third condition of RBSDE (5) (resp. (6)) which is called the minimal boundary
condition i.e. K+,i (resp. K−,i) increases only when Y +,i (resp. Y −,i) touches
the respective barrier.
Let us make precise the notion of a solution of the system of RBSDEs (S).

Definition 1. A 6-uplet of processes (Y +,i, Z+,i,K+,i, Y −,i, Z−,i,K−,i) is called
solution of the system of RBSDEs (S) if the two triples (Y +,i, Z+,i,K+,i) and
(Y −,i, Z−,i,K−,i) belong to S2 ×Md,2 ×K2 and satisfy the system (S).

The main contribution of our paper is to establish the existence of a contin-
uous minimal adapted solution to system of RBSDEs (S). To this end we use a
Picard iteration method (see El Karoui et al. [10] for more details). Uniqueness
of the solution does not hold, since it is not verified even for the two-modes
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case and for a less general form of RBSDE (S) (see the counter-example in [4,
subsection 3.1]).

Clearly, our results generalize the related works in the literature, since our
RBSDE (S) is more general in many features. Actually, the expected profits and

cost yields
−→
Y +and

−→
Y −are respectively interconnected in the generators f+i and

f−i . This dependence can be interpreted as a nonzero-sum game problem, where
the players’ utilities affect each other. Furthermore, the solutions Y +,i and Y −,i

are also interconnected in the barriers. Note that, the general barrier hi,j(·, y)
which is random and nonlinear, makes the dependence on the unknown process
implicit. This, allows one to consider more general switching cost, for instance
in the case of risk sensitive switching problem.

The remainder of the paper is organized as follows. Section 2 is devoted to
the assumptions. In Section 3, we state and prove the main result of the paper.

2 Assumptions

Let us introduce the following assumptions:
[H1]: For each i ∈ Λ, f+i and f−i satisfies:

(i) E
(∫ T

0

sup
−→y :yi=0

∣∣f+i (t,−→y , 0)
∣∣2 dt+

∫ T

0

sup
−→y :yi=0

∣∣f−i (t,−→y , 0)
∣∣2 dt) < +∞.

(ii) The mappings (t,−→y , zi)→ f+i (t,−→y , zi) and (t,−→y , zi)→ f−i (t,−→y , zi) are Lip-
schitz continuous in (yi, zi) uniformly in t, and are continuous in yj for j ∈ Λ−i.
(iii) f+i (t,−→y , zi) and f−i (t,−→y , zi) are increasing in yj for j ∈ Λ−i. This assump-
tion means that the m-players are partners.
[H2]: For each i, j ∈ Λ, hi,j satisfies:
(i) hi,j(t, y) is continuous in (t, y);
(ii) hi,j(t, y) is increasing in y;
(iii) hi,j(t, y) ≤ y.
(iv) There is no sequence i2 ∈ Λ−i1 , . . . , ik ∈ Λ−ik−1 , i1 ∈ Λ−ik , and (y1, . . . , yk)
such that y1 = hi1,i2(t, y2), y2 = hi2,i3(t, y3), . . . , yk−1 = hik−1,ik(t, yk), yk =
hik,i1(t, y1). This means that there is no free loop of instantaneous switchings.

[H3]: For t ∈ [0, T ] and i ∈ Λ, Bi(t), Ci(t) and Si(t) belong to S2.
[H4]: For any i ∈ Λ the random variables ξ+i and ξ−i are FT –measurable and
belong to L2. Moreover we assume that

ξ+i ≥ max
j∈Λ−i

hi,j(T, ξ
+
j ) ∨ (ξ−i + Ci(T )), and ξ−i ≤ S

i(T ) ∧
(
ξ+i +Bi(T )

)
.

[H5]: For every i ∈ Λ, the processes (Bi(t))0≤t≤T and (Si(t))0≤t≤T are semi-

martingales of the form Bi(t) = Bi(0) +

∫ t

0

U i(s)ds+

∫ t

0

V i(s)dWs and

Si(t) = Si(0)+

∫ t

0

Ū i(s)ds+

∫ t

0

V̄ i(s)dWs where (U i(t), Ū i(t)) and (V i(t), V̄ i(t))

are respectively (R)2 and (Rd)2-valued Ft–progressively measurable processes
which are dt⊗ dP–square integrable.
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3 Main result

Next we state and prove the main result of this paper.

Theorem 1. Assume that [H1]–[H5] hold. Then for all i ∈ Λ, the system of
RBSDEs (S) admits a continuous minimal solution (Y ±,i, Z±,i,K±,i).

Proof. The whole proof is performed in six steps.
Step 1: Construction of Picard’s sequence of solutions
Consider the following sequence of RBSDEs defined recursively, for i ∈ Λ and
t ∈ [0, T ], as follows: For n = 0 we start with the following BSDE:

Y +,i,0
t = ξ+i +

∫ T

t

f+
i

(s, Y +,i,0
s , Z+,i,0

s )ds−
∫ T

t

Z+,i,0
s dWs, (7)

and RBSDE:
Y −,i,0t = ξ−i +

∫ T

t

f−
i

(s, Y −,i,0s , Z−,i,0s )ds−
∫ T

t

Z−,i,0s dWs −K−,i,0T +K−,i,0t ,

Y −,i,0t ≤ Si(t) ∧
(
Y +,i,0
t +Bi(t)

)
, (8)

0 =

∫ T

0

[
Si(t) ∧

(
Y +,i,0
t +Bi(t)

)
− Y −,i,0t

]
dK−,i,0t ,

where f+
i

(s, y, zi) = inf−→y :yi=y
f+i (s,−→y , zi) and f−

i
(s, y, zi) = inf−→y :yi=y

f−i (s,−→y , zi).

Now, for n = 0 consider the following system of RBSDEs:

Y −,i,1t = ξ−i −
∫ T

t

Z−,i,1s dWs −K−,i,1T +K−,i,1t

+

∫ T

t

f−i (s, Y −,1,0s , . . . , Y −,i−1,0s , Y −,i,1s , Y −,i+1,0
s , . . . , Y −,m,0s , Z−,i,1s )ds,

Y −,i,1t ≤ Si(t) ∧
(
Y +,i,0
t +Bi(t)

)
,

0 =

∫ T

0

[
Si(t) ∧

(
Y +,i,0
t +Bi(t)

)
− Y −,i,1t

]
dK−,i,1t ,

Y +,i,1
t = ξ+i −

∫ T

t

Z+,i,1
s dWs +K+,i,1

T −K+,i,1
t

+

∫ T

t

f+i (s, Y +,1,0
s , . . . , Y +,i−1,0

s , Y +,i,1
s , Y +,i+1,0

s , . . . , Y +,m,0
s , Z+,i,1

s ) ds,

Y +,i,1
t ≥ max

j∈Λ−i
hi,j(t, Y

+,j,0
t ) ∨

(
Y −,i,1t + Ci(t)

)
,

0 =

∫ T

0

[
Y +,i,1
t − max

j∈Λ−i
hi,j(t, Y

+,j,0
t ) ∨

(
Y −,i,1t + Ci(t)

)]
dK+,i,1

t . (9)

Note that by [H1](i) and (ii) we have that f+
i

and f−
i

are uniformly Lipschitz

continuous in (y, zi) and satisfy the following integrability condition

E
{∫ T

0

(
|f+
i

(t, 0, 0)|2 + |f−
i

(t, 0, 0)|2
)
dt

}
< +∞.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_43

https://dx.doi.org/10.1007/978-3-030-50436-6_43


BSDEs And Balance Sheet Optimal Switching 7

Thus, from [14] it follows that for each i ∈ Λ BSDE (7) admits a unique solution
(Y +,i,0, Z+,i,0) ∈ S2 ×Md,2. Thus, there exists a constant C > 0 such that

E

 sup
t∈[0,T ]

∣∣∣∣∣
(
Si(t) ∧

(
Y +,i,0
t +Bi(t)

))+
∣∣∣∣∣
2
 ≤ C < +∞, (10)

and thus in view of [10, Proposition 2.3] we deduce that RBSDE (8) has a unique
solution (Y −,i,0, Z−,i,0,K−,i,0) ∈ S2 ×Md,2 ×K2.
As a by product, under the assumptions [H1]–[H4], in view of [10, Proposition
2.3] the solution (Y −,i,1, Z−,i,1,K−,i,1) ∈ S2 ×Md,2 ×K2 exists and is unique.
This in turn, in view of the following estimate, which holds due to assumption
[H2](iii), [H3] and the fact that Y −,i,1 ∈ S2,

E

 sup
t∈[0,T ]

∣∣∣∣∣
(

max
j∈Λ−i

hi,j(t, Y
+,j,0
t ) ∨

(
Y −,i,1t + Ci(t)

))+
∣∣∣∣∣
2
 ≤ C < +∞,

combined with [10, Proposition 2.3], leads to the existence of the unique solution
(Y +,i,1, Z+,i,1,K+,i,1) ∈ S2 ×Md,2 ×K2.
Next, for n ≥ 1, consider the following system

Y −,i,n+1
t = ξ−i +

∫ T

t

f−i (s, Y −,1,ns , . . . , Y −,i−1,ns , Y −,i,n+1
s , Y −,i+1,n

s , . . .

. . . , Y −,m,ns , Z−,i,n+1
s )ds−

∫ T

t

Z−,i,n+1
s dWs −K−,i,n+1

T +K−,i,n+1
t ,

Y −,i,n+1
t ≤ Si(t) ∧

(
Y +,i,n
t +Bi(t)

)
,

0 =

∫ T

0

[
Si(t) ∧

(
Y +,i,n
t +Bi(t)

)
− Y −,i,n+1

t

]
dK−,i,n+1

t ,

Y +,i,n+1
t = ξ+i +

∫ T

t

f+i (s, Y +,1,n
s , . . . , Y +,i−1,n

s , Y +,i,n+1
s , Y +,i+1,n

s , . . .

. . . , Y +,m,n
s , Z+,i,n+1

s )ds−
∫ T

t

Z+,i,n+1
s dWs +K+,i,n+1

T −K+,i,n+1
t ,

Y +,i,n+1
t ≥ max

j∈Λ−i
hi,j(t, Y

+,j,n
t ) ∨ (Y −,i,n+1

t + Ci(t)),

0 =

∫ T

0

[
Y +,i,n+1
t − max

j∈Λ−i
hi,j(t, Y

+,j,n
t ) ∨

(
Y −,i,n+1
t + Ci(t)

)]
dK+,i,n+1

t .

(11)

Based on the arguments used previously, we can show by using an induction
argument that for any n ≥ 2, the system of RBSDEs (11) has a unique solution

(Y +,i,n, Z+,i,n,K+,i,n, Y −,i,n, Z−,i,n,K−,i,n) ∈ (S2)2×(Md,2)2×(K2)2, ∀i ∈ Λ.
Step 2: Convergence of the sequences (Y ±,i,n)n≥0
Let us set,

f̂−i (s, y, zi) = sup
−→y :yi=y

f−i (s,−→y , zi) and ḟ+i (s, y, zi) = sup
−→y :yi=y

f+i (s,−→y , zi).
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Note that by [H1](i) and (ii) we have that f̂−i and ḟ+i are uniformly Lipschitz
continuous in (y, zi) and satisfy the following integrability condition

E
{∫ T

0

(
|f̂−i (t, 0, 0)|2 + |ḟ+i (t, 0, 0)|2

)
dt

}
< +∞. (12)

Consider the following BSDE

Ŷt =

m∑
i=1

|ξ−i |+
∫ T

t

m∑
i=1

|f̂−i (s, Ŷs, Ẑ
i
s)|ds−

∫ T

t

ẐsdWs.

It follows from [14] that this BSDE admits a unique solution (Ŷt, Ẑt) ∈ S2×Md,2.
Next, let (Ẏ i, Żi, K̇i) be solutions of the following system of reflected BSDEs,
for any i ∈ Λ and t ∈ [0, T ], as follows

Ẏ it =

m∑
i=1

|ξ+i |+
m∑
i=1

|ξ−i |+ |C
i(T )|+

∫ T

t

m∑
i=1

|ḟ+i (s, Ŷs, Ẑ
i
s)|ds

−
∫ T

t

ŻsdWs + K̇i
T − K̇i

t ,

Ẏ it ≥ max
j∈Λ−i

hi,j(t, Ẏ
j
t ) ∨

(
Ŷt + Ci(t)

)
,∫ T

0

[
Ẏ is − max

j∈Λ−i
hi,j(s, Ẏ

j
s ) ∨

(
Ŷs + Ci(s)

)]
dK̇i

s = 0. (13)

By using previous arguments, and thanks to the fact that Ŷt ∈ S2 and assump-
tion [H3], applying [1, Theorem 3.1] yields that this RBSDE admits a solution
(Ẏ i, Żi, K̇i) ∈ S2 ×Md,2 × K2. Moreover, the following holds Next, by using
an induction argument, plus a repeated use of the comparison theorem, we can
easily show that for any i ∈ Λ, t ∈ [0, T ], ∀n:

Y −,i,0t ≤ Y −,i,nt ≤ Y −,i,n+1
t ≤ Ŷt and Y +,i,0

t ≤ Y +,i,n
t ≤ Y +,i,n+1

t ≤ Ẏ it , a.s.

(14)
Consequently, we deduce the following

sup
n≥1

E[ sup
t∈[0,T ]

|Y +,i,n
t |2] ≤ E[ sup

t∈[0,T ]

|Y +,i,0
t |2] + E[ sup

t∈[0,T ]

|Ẏ it |2] <∞, ∀i ∈ Λ, (15)

sup
n≥1

E[ sup
t∈[0,T ]

|Y −,i,nt |2] ≤ E[ sup
t∈[0,T ]

|Y −,i,0t |2] + E[ sup
t∈[0,T ]

|Ŷt|2] <∞, ∀i ∈ Λ. (16)

Next, from (14) combined with (15) and (16) we deduce that the sequences
{Y +,i,n}n≥0 and {Y −,i,n}n≥0 admit limits. Therefore, let Y +,i and Y −,i, i ∈ Λ
be two optional processes which are respectively the limits of Y +,i,n and Y −,i,n.
Applying Fatou’s Lemma and the dominated convergence theorem, we obtain

E[ sup
t∈[0,T ]

|Y ±,it |2] <∞, lim
n→∞

E
∫ T

0

|Y ±,i,nt − Y ±,it |2 dt = 0, i ∈ Λ. (17)
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Step 3: Uniform estimates for the sequences {(Z±,i,n,K±,i,n)}n≥0, i ∈ Λ
By [H2](iii), we obtain in view of the facts (Ŷt, Ẑt) ∈ S2 ×Md,2, (Ẏ i, Żi, K̇i) ∈
S2 × Md,2 × K2 and (14) combined with [H3] the following estimate of the
barriers of RBSDE (11): for all n ≥ 1 and all i ∈ Λ

E

 sup
0≤t≤T

∣∣∣∣∣
(

max
j∈Λ−i

hi,j(t, Y
+,j,n
t ) ∨ (Y −,i,n+1

t + Ci(t))

)+
∣∣∣∣∣
2
 < +∞, (18)

E

 sup
0≤t≤T

∣∣∣∣∣
(
Si(t) ∧

(
Y +,i,n
t +Bi(t)

))+
∣∣∣∣∣
2
 < +∞. (19)

Finally, with the estimates (15), (16), (18) and (19) at hand, applying the results
in [10] we obtain that

sup
n≥1

E[

∫ T

0

|Z±,i,nt |2 dt] <∞, sup
n≥1

E|K±,i,nT |2 <∞, i ∈ Λ. (20)

Step 4: Continuity of the limit processes Y −,i and Y +,i, i ∈ Λ.
To this end, let us first establish the absolute continuity of the increasing process
K−,i,n w.r.t t for every n ≥ 0.
We will first show that the claim holds true for n = 0. Let

Ξit := Sit ∧
(
Y +,i,0
t +Bi(t)

)
= Y +,i,0

t +Bi(t)−
(
Y +,i,0
t +Bi(t)− Sit

)+
.

Applying Itô–Tanaka formula to Ξit , and in view of assumption [H5] we obtain

Ξit = Ξi0 +

∫ t

0

M i
sds+

∫ t

0

N i
sdWs −

1

2
Lit, (21)

where {Lit, 0 ≤ t ≤ T} is the local time at 0 of the continuous semimartingale
{Y +,i,0

t +Bi(t)− Si(t)},

M i
t := −1{Y +,i,0

t +Bi(t)>Si(t)}

(
− f+

i
(s, Y +,i,0

s , Z+,i,0
s ) + U it − Ū it

)
−f+

i
(s, Y +,i,0

s , Z+,i,0
s ) + U it ,

and
N i
t := Z+,i,0

t + V it − 1{Y +,i,0
t +Bi(t)>Si(t)}

(
Z+,i,0
t + V it − V̄ it

)
.

Note that f+
i

and f−
i

are uniformly Lipschitz continuous in (y, zi). Thus, using

the fact that (Y +,i,0, Z+,i,0) and (Y −,i,0, Z−,i,0) belong respectively to S2×Md,2,
yields that there is a constant C > 0 such that

E
{∫ T

0

(
|f+
i

(t, Y +,i,0
t , Z+,i,0

t )|2 + |f−
i

(t, Y −,i,0t , Z−,i,0t )|2
)
dt

}
≤ C. (22)
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Moreover, in view of the above and assumption [H5], there exists a constant
C > 0 such that

E

[∫ T

0

(|M i
t |2 + |N i

t |2)dt

]
≤ C < +∞. (23)

Then, applying [10, Proposition 4.2] yields for all t ≤ T

0 ≤ dK−,i,0t ≤ 1{Y −,i,0
t =Ξi

t}

[
f−
i

(s, Y −,i,0s , Z−,i,0s ) +M i
t

]+
dt, (24)

which means that, K−,i,0 is absolutely continuous w.r.t. t. Next, in the same
spirit, we can show, thanks to [10, Proposition 4.2], for all n > 0 that the
process K−,i,n+1 is absolutely continuous w.r.t. t. Furthermore, we can obtain
that: there exists a constant C > 0 such that for all n ≥ 0 and i ∈ Λ,

E

[∫ T

0

(dK−,i,n
dt

)2
dt

]
≤ C. (25)

Notice that, by combining [H1](ii) together with (15), (16), (20)we obtain that
there is a constant C > 0 such that

sup
n≥0

E
{∫ T

0

∣∣∣f−i (t, Y −,1,nt , . . . , Y −,i−1,nt , Y −,i,n+1
t , Y −,i+1,n

t , . . . , Y −,m,nt ,

Z−,i,n+1
t )

∣∣∣2 dt} ≤ C < +∞. (26)

Next, in view of estimates (20), (25) and (26), we deduce that there exists a

subsequence along which all ((
dK−,i,n+1

t

dt )0≤t≤T )n≥0, ((Z−,i,n+1
t )0≤t≤T )n≥0 and

((f−i (t, Y −,1,nt , . . . , Y −,i−1,nt , Y −,i,n+1
t , Y −,i+1,n

t , . . . , Y −,m,nt , Z−,i,n+1
t ))0≤t≤T )n≥0

converge weakly in their respective spacesM1,2,Md,2 andM1,2 to the processes
(k−,it )0≤t≤T , (Z−,it )0≤t≤T and (ϕ−,i(t))0≤t≤T .
Next, for any n ≥ 0 and any stopping time τ we have

Y −,i,n+1
τ = Y −,i,n+1

0 +K−,i,n+1
τ +

∫ τ

0

Z−,i,n+1
s dBs

−
∫ τ

0

f−i (t, Y −,1,ns , . . . , Y −,i−1,ns , Y −,i,n+1
s , Y −,i+1,n

s , . . . , Y −,m,ns , Z−,i,n+1
s )ds.

Taking the weak limits in each side and along this subsequence yields

Y −,iτ = Y −,i0 −
∫ τ

0

ϕ−,i(s)ds+

∫ τ

0

k−,is ds+

∫ τ

0

Z−,is dBs, P–a.s.

Since the processes appearing in each side are optional, using the Optional Sec-
tion Theorem (see e.g. [3], Chapter IV pp.220), it follows that

Y −,it = Y −,i0 −
∫ t

0

ϕ−,i(s)ds+

∫ t

0

k−,is ds+

∫ t

0

Z−,is dBs, ∀ t ≤ T, P–a.s. (27)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_43

https://dx.doi.org/10.1007/978-3-030-50436-6_43


BSDEs And Balance Sheet Optimal Switching 11

Therefore, the process Y −,i is continuous. Relying both on Dini’s Theorem and
on Lebesgue’s dominated convergence one (17), we also get that

lim
n→∞

E

[
sup

0≤t≤T
|Y −,i,nt − Y −,it |2

]
= 0. (28)

We will now focus on the continuity of the sequence of processes (Y +,i
t )0≤t≤T ,

∀ i ∈ Λ. Actually, applying Peng’s Monotone Limit Theorem (see [15]) yields
that for every i ∈ Λ, the limit process Y +,i is càdlàg. Based on what has been
already shown in previous steps, by mimicking the arguments of [15] we can
easily show that there exist two processes K+,i ∈ K2

c and Z+,i ∈Md,2 such that
Y +,i satisfies the first equation of RBSDE (S). Moreover, passing to the limit in
the fifth inequality of RBSDE (11), implies that Y +,i

t ≥ S+,i
t , t ∈ [0, T ], i ∈ Λ.

Thus, for i ∈ Λ, (Y +,i, Z+,i,K+,i) satisfiesY +,i
t = ξ+i +

∫ T

t

f+i (s,
−→
Y +,i
s , Z+,i

s )ds−
∫ T

t

Z+,i
s dWs +K+,i

T −K+,i
t ,

Y +,i
t ≥ S+,i

t .

(29)

It remains to prove the minimal boundary condition. Next, consider the following
RBSDE whose solution exists thanks to [16]:

Ỹ +,i
t = ξ+i +

∫ T

t

f+i (s, Y +,1
s , . . . , Y +,i−1

s , Ỹ +,i
s , Y +,i+1

s , . . . , Y +,m
s , Z̃+,i

s ) ds

−
∫ T

t

Z̃+,i
s dWs + K̃+,i

T − K̃+,i
t ,

Ỹ +,i
t ≥ S+,i

t− , and

∫ T

0

[
Ỹ +,i
s− − S

+,i
s−

]
dK̃+,i

s = 0. (30)

Note that RBSDEs (29) and (30) have the same lower barrier. In fact, since Ỹ +,i
t

is the smallest f+i –supermartingale with lower barrier S+,i
t , we have that for any

i ∈ Λ, Ỹ +,i
t ≤ Y +,i

t (see [16, Theorem 2.1]). On the other hand since for any
i ∈ Λ and n ≥ 1, Y +,i,n

t ≤ Y +,i
t and Y −,i,n+1

t ≤ Y −,it , applying the comparison

theorem in view of [H2](ii) yields that Y +,i,n+1
t ≤ Ỹ +,i

t , and then passing to

the limit implies that Y +,i
t ≤ Ỹ +,i

t . Summing up we have that for any i ∈ Λ,
Y +,i
t = Ỹ +,i

t . From the uniqueness of the Doob-Meyer decomposition, it follows

that Z+,i
t = Z̃+,i

t , dt×dP–a.s., and K+,i
t = K̃+,i

t for any 0 ≤ t ≤ T , P–a.s. Then,
for i ∈ Λ, (Y +,i, Z+,i,K+,i) satisfies RBSDE (5) but with the following minimal
boundary condition∫ T

0

[
Y +,i
s− − max

j∈Λ−i
hi,j(s, Y

+,j
s− ) ∨ (Y −,is + Ci(s)

)]
dK+,i

s = 0. (31)

From the first equation of (29) and since the process K+,i
t is increasing, it follows

that ∆Y +,i
t = −∆K+,i

t ≤ 0. Assume that ∆Y +,i1
t∗ < 0, for some (i1, t

∗) ∈
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Λ× [0, T ]. Thus ∆K+,i1
t∗ > 0. From the minimality condition (31), we have

Y +,i1
t∗− = max

j∈Λ−i1

hi1,j(t
∗, Y +,j

t∗− ) ∨
(
Y −,i1t∗ + Ci1(t∗)

)
.

Let i2 ∈ Λ−i1 be the optimal index for which the maximum is attained. Thus,

hi1,i2(t∗, Y +,i2
t∗− ) ∨ (Y −,i1t∗ + Ci1(t∗)) = Y +,i1

t∗−

> Y +,i1
t∗

= hi1,i2(t∗, Y +,i2
t∗ ) ∨ (Y −,i1t∗ + Ci1(t∗)).

(32)

This obviously yields that Y +,i1
t∗− = hi1,i2(t∗, Y +,i2

t∗− ) > hi1,i2(t∗, Y +,i2
t∗ ), and thus

∆Y +,i2
t∗ < 0. Repeating the above procedure we obtain for ik ∈ Λ−ik−1

∆Y +,ik
t∗ < 0, and Y +,ik

t∗− = hik,ik+1
(t∗, Y

+,ik+1

t∗− ), k = 2, . . . ,m.

Since each ik can take only values in Λ which is a finite set, then there must
be a loop in Λ. we may assume w.l.o.g. that ik+1 = i1 for some k ≥ 2 noting
again that the ik’s are mutually different i.e. for each k, ik ∈ Λ−ik−1 . Therefore,
we have Y +,i1

t− = hi1,i2(t∗, Y +,i2
t∗− ), . . . , Y

+,ik−1

t− = hik−1,ik(t∗, Y +,ik
t∗− ), and Y +,ik

t− =

hik,i1(t∗, Y +,i1
t∗− ). This contradicts assumption [H2](iv). Consequently, ∆Y +,i

t =

∆K+,i
t = 0, t ∈ [0, T ], ∀i ∈ Λ. Hence, the processes Y +,i and K+,i, i ∈ Λ are

continuous.
Step 5: Identification of the limit
Next, we show that

lim
n→∞

E{ sup
0≤t≤T

|Y +,i,n
t − Y +,i

t |2 + |K+,i,n
T −K+,i

T |
2 +

∫ T

0

|Z+,i,n
t − Z+,i

t |2dt} = 0.

Actually, since Y +,i,n ↗ Y +,i and Y +,i is continuous then relying both on Dini’s
Theorem and on Lebesgue’s dominated convergence one (17), we get that

lim
n→∞

E
[

sup
0≤t≤T

|Y +,i,n
t − Y +,i

t |2
]

= 0. (33)

Further, we can easily show by applying Itô’s formula to |Y ±,i,nt −Y ±,i,pt |2 (n, p ≥
0) and using standard arguments (see e.g. [10]) that

lim
n→∞

E[

∫ T

0

|Z±,i,nt − Z±,it |2dt+ |K+,i,n
T −K+,i

T |
2 + |K−,i,nT −

∫ T

0

k−,is ds|2] = 0.

From this, and [H1](ii) combined with (27), (28) it holds that

ϕ−i (t) = f−i (t,
−→
Y −t , Z

−,i
t ), 0 ≤ t ≤ T.

Next, passing to the limit in the second inequality of RBSDE (11), yields that
Y −,it ≤ S−,it , t ∈ [0, T ], i ∈ Λ. Furthermore, thanks to the weak convergence of
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((
dK−,i,n

t

dt )0≤t≤T )n≥1 to the process k−,i and the strong convergences (28) and
(33), we deduce that

0 =

∫ T

0

[
Si(t) ∧

(
Y +,i,n
t +Bi(t)

)
− Y −,i,n+1

t

]
dK−,i,n+1

t

−→
∫ T

0

[
S−,it − Y −,it

]
k−,it dt = 0, as n→ +∞.

In fact, this implies that (Y −,i, Z−,i,K−,i :=
∫ .
0
k−,is ds) is a solution to the sec-

ond part of RBSDE (S). Summing up (Y ±,i, Z±,i,K±,i) is a solution of RBSDE
(S). Finally, it remains to show that this solution is the minimal one.
Step 6: Minimality of the solution of RBSDE (S)
Let (Ȳ +,i, Z̄+,i, K̄+,i, Ȳ −,i, Z̄−,i, K̄−,i) be another solution of RBSDE (S). Since
Y +,i,n ≤ Y +,i and Y −,i,n ≤ Y −,i, for all n ≥ 0, and thanks to the monotonicity
of hi,j applying the comparison theorem yields that for each i ∈ Λ: Y +,i,n ≤ Ȳ +,i

and Y −,i,n ≤ Ȳ −,i, for all n ≥ 0. Passing to the limit when n→∞ implies that
for each i ∈ Λ: Y +,i ≤ Ȳ +,i and Y −,i ≤ Ȳ −,i, which is the desired result. This
ends the proof of Theorem 1.

4 Conclusion and perspectives

In this paper we have proved the existence of a continuous minimal solution
to RBSDE (S) which is arising from BSOSPs. Let us comment on a possible
generalization of the results obtained in this paper. Actually, the full balance
sheet case is still an open problem and constitutes a challenge. By the full balance
sheet case we mean that we consider the two sides of the balance sheet. Indeed,
in this case the expected cost in mode i, Y −,i should rise above the following
barrier

min
j∈Λ−i

li,j(t, Y
−,j
t ) ∧

(
Y +,i
t +Bi(t)

)
, (34)

instead of S−,it where li,j is a real nonlinear random function satisfying [H2],
except for [H2]–(iii) which is replaced by li,j(t, y) ≥ y. We want to stress out
that, the new assumption [H2] is satisfied when li,j takes the particular form
li,j(·, y) = y + gi,j where gi,j is the switching cost from mode i to mode j.

A full BSOSP amounts to establishing existence of a continuous solution to
the system of RBSDEs (S), but with the upper barrier (34) for Y −,i,∀i ∈ Λ.
Note that, as in the proof of Theorem 1 (Step 4) the absolute continuity of
the process K−,it w.r.t. t will play a primordial role to derive convergence of
the corresponding approximating sequence. To do so we need to use the Itô–
Tanaka formula (see Step 4), which makes it difficult to solve the system of
RBSDEs (S) for the full balance sheet case. Note that even in the case when the
functions hi,j and li,j take the particular forms respectively hi,j(·, y) = y − gi,j
and li,j(·, y) = y + gi,j let alone the general case, the question of existence of
solutions to the corresponding system of RBSDEs (S) for the full balance sheet
case, is still open. This issue was discussed in [5] and in [6] in the mean field
case.
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