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Abstract. In this paper, we study a system of multidimensional cou-
pled reflected backward stochastic differential equations (RBSDEs) with
interconnected generators and barriers and mixed reflections, i.e. oblique
and normal reflections. This system of equations is arising in the con-
text of optimal switching problem when both sides of the balance sheet
are considered. This problem incorporates both the action of switching
between investment modes and the action of abandoning the investment
project before its maturity once it becomes unprofitable. Pricing such
real options (switch option and abandon option) is equivalent to solve
the system of coupled RBSDEs considered in the paper, for which we
show the existence of a continuous adapted minimal solution via a Pi-
card iteration method.

Keywords: Real options: Optimal switching- Balance sheet- Trade-off
strategies: Merger and acquisition- Backward SDEs- Mixed reflections.

1 Introduction

Optimal switching problem (OSP) has attracted a lot of interest in the recent
years (see among others [TI2IBIGI7ITTITZ]), since it can be related to many practi-
cal applications, for example the problem of valuation investment opportunities.
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2 R. Belfadli et al.

OSP consists in finding an optimal management strategy for a production com-
pany that can run in m, m > 2, different modes . A management strategy o
is a combination of a nondecreasing sequence of stopping times (7,,)n>0, and a
sequence of random variables (e, ),>0 taking values in the set of possible produc-
tion modes A = {1,...,m}. At time 7,, in order to maximize the profit of the
company, the manager decides to switch the production from the current mode
€n—1 to €,. When the production of the company is working under a strategy
0, it generates a gain equal to J(0). The OSP amounts to finding an optimal
management strategy J* such that J(6*) = sup J(d). The OSP is connected with
5

multidimensional RBSDEs with oblique reflections and interconnected barriers.

One dimensional BSDEs with normal reflections were first introduced by [10].
The multidimensional case was studied by Gegout-Petit and Pardoux [9], and
then further investigated in many other works see e.g. [8I3]. Multidimensional
BSDEs with oblique reflections occurring in the context of OSPs were first
introduced by [12]. They consider RBSDEs with generator taking the form

fi(,y%, 2Y) and barrier jlerl/ilgi (y.j + gi,j) where g; ; are constant switching costs

and A~" = A — {i}. Later, Hamadéne and Zhang [I1] generalized the preced-

ing work by considering general generators and barriers of the following types

filyt o y™, 2%) and max, hij(.,y7). Xu [17] dealt with the same kind of RB-
JjeA™?

SDEs but when the generator, which is discontinuous w.r.t. %%, and the barrier

take respectively the following forms f;(-, y¢, %) and max, (y] - gw-) V S%. Then,
jeA—

Aazizi et al. [I] extended the results of [I7] to the case of generators and barriers
of the form f;(-,y!,...,y™, 2") and max hi (., y7) VS
jeA®

In this paper, we are interested by Balance sheet OSP (BSOSP) which is a
combination between the classical OSP described above and optimal stopping
involving the balance sheet. BSOSP incorporates both the action of switching
between modes and the action of abandoning a project once it becomes unprof-
itable. There are only few papers dealing with BSOSPs. Djehiche and Hamdi [4]
considered the 2-modes case, i.e. A = {1,2}. Their generators are of the form
FrEY P Z5N) f7 (LY TN 2700 and their barriers of type (Y19 — g, 5(.) V
(Y—'—=Cy(.)) and (Y7 +g; ;(.)) V(Y + B;(.)), where C; and B; are switching
costs and j € A~% Recently, the BSOSP multi-modes case was solved by Eddahbi
et al. [B] when the barriers are of the form _rél/z%xv(Y'*J —gi; () V(Y +CY)
jeA-i

and Y7 + B;(.) (see Eddahbi et al. [6] for the mean—field case).

Now, let us describe precisely the problem studied in this paper by in-
troducing some notations. Let T > 0 be a given real number, and ({2, F,P)
is a fixed probability space endowed with a d-dimensional Brownian motion
W = (Wy)o<i<r. F = (Fi)o<i<r is the natural filtration of the Brownian mo-
tion augmented by the P-null sets of F. All the measurability notion will re-
fer to this filtration. The euclidean norm of a vector z € IR? is denoted |z|.
Furthermore, we introduce the following spaces of processes. L2 is the space
of R-valued processes ¢, such that |||z = (E [|¢[*])Y/? < +oo. S? (resp.
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82) is the set of R—valued adapted and continuous (resp. cadlag ) processes

1/2
(Y:)g<y<r such that ||[Y||s2 (resp. ||Y||53) = (E [ iug |Yt|2}) < +oo.
== 0<t<T

M%2 is the set of R%valued, progressively measurable processes (Zt)g<y<g such

1/2
that || Z|| ppa2 = (E UOT |ZS|2ds} > < +00. K% (resp. K?) is the set of non-

decreasing processes K, satisfying Ky = 0 and that belong to S? (resp. S?).

Next, to illustrate the BSOSP studied in this paper, let us deal with a con-
crete example. Consider a company that has m modes of production (if m = 3,
minimal, average and maximal production modes). The manager of the company
has two options. A switch option, i.e. in order to maximize its global profit, she
switches the production between the modes depending on their random perfor-
mances but this switching incorporates a cost called switching cost. The manager
has also an abandon option i.e. stop the production once it becomes unprofitable.
More precisely, being in mode ¢ € A, one have to switch at time ¢ to another
mode j € A™% once we have that the expected profit Y% in this mode falls
below the following barrier

Y < S = max by (6 Y V(T O W) Y EE 0,T] (1)
jeA—i

where h; ; is nonlinear random function (a special case is when h; ; (., ¥) = y—gi,;,
where g; ; is a switching cost from mode i to mode j), Y 7" is the expected cost
in mode 4, and C? is the cost incurred when exiting/terminating the production
while in mode i. Since we consider both sides of the balance sheet, the manager
has to switch at time ¢ to another mode j € A%, as soon as the expected cost
in mode 4, Y 7! rises above the following barrier

Y, > 8 =S A (Yj” + Bi(t)),v t e 0,7, (2)

where S(t) is a cost of default (i.e. in this case the project is no longer profitable
and thus leads to the abandon of this latter even before its maturity), and B? is
the benefit incurred when exiting/terminating the production while in mode 3.
It is well known that the BSOSP can be formulated using the following system
of Snell envelopes

Yt+’i =esssup B [/ fif (s)ds + Sj’il[r<T] + 51'+1[7'—T]|]:t:| ) (3)
T>t t

Y, =ess H;EE [/ fi (s)ds + S;’i1[7<T] + 5i1[T—T]|}—t] ) (4)
> t

where 7 € [0,T] are F—stopping times which represent the exit times from the
production in mode i, f;" and f; denote respectively the running profit and
cost, per unit time dt and f;r and §; are respectively the values at time 7" of the
profit and the cost yields.
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The BSOSP consists in showing existence and uniqueness of the processes
(YT Y%, and also proving that the following stopping times are optimal

i = inf{s >t Y:” = Sjl} AT,and 7% = inf{s >t Y:l = S;’i} ANT.

Since the Snell envelope is strongly connected to RBSDEs, solving the BSOSP
is equivalent to showing existence of continuous solution to the following gen-

eral (sine we take f;7(.) = f(s, ?j,Zj’i) fi(s) = f(s,Y;,Z;") where
Y+ o= (Yt y+m), ¥ = (Y,...,Y ™)) system of BSDEs with
mixed reflections: for i € A:={1,...,m}
— €+ / f+ 7+ Z+1 _/ Z;'_’ldWS + K;:,z _ Kt-i-,z’
¢
VAR CAR and/ [V,hi—SHdK ' =0, (5)
(5) T | 4
Y, =g +/ f (s, Y 0,27 ds —/ Z7MdWs — Koo' + K,
¢
¥ < 57, and / (S5 — Y] di =0, (6)
0
where T is called the time horizon, & and ¢, are called the terminal condi-
thIlb the random functions f;"(w,t, Y, 2") : 2 x [0,T] x R™ x R — IR and
fi 7 : 2 x [0, T ] x IR™ x ]Rd — IR are respectively JF;—progressively

measurable for each (7 z"), called the generators. h; ; is a real nonlinear random
function, and C* := (C*(t))eo, 1], B' := (B(t))eo, 1], and S* := (S*(t))seqo,1]
are previously given (F;)o<;<r—adapted processes with some suitable regularity.
The unknowns are the processes (Y*i Z+1 K1) := (Y,fi’i,thE’i,Kf’i)te[o’T}
which are required to be (F;)o<t<7—adapted. Moreover, K¢ and K~ are non-
decreasing processes. The second condition in (resp. (6))) says that the first
component Y (resp. Y =+%) of the solution of RBSDE (resp. () is forced
to stay above (resp. below) the barrier S* (resp. S~+%). The role of K+ (resp.
K~ is to push Y™ (resp. Y ') upwards (resp. downwards) in order to keep
it above (resp. below) the respective barrier in a minimal way in the sense of the
third condition of RBSDE (j5|) (resp. @ which is called the minimal boundary
condition i.e. K¢ (resp. K %) increases only when Y ¢ (resp. Y %) touches
the respective barrier.

Let us make precise the notion of a solution of the system of RBSDEs (S).

Definition 1. A 6-uplet of processes (Y i, Z 4 K1y =1 Z__’i, K‘z) is called
solution of the system of RBSDEs (S) if the two triples (Y1, ZT¢ K™ and
(Y=, Z=% K% belong to S? x M%2 x K2 and satisfy the system (S).

The main contribution of our paper is to establish the existence of a contin-
uous minimal adapted solution to system of RBSDEs (S). To this end we use a

Picard iteration method (see El Karoui et al. [TI0] for more details). Uniqueness
of the solution does not hold, since it is not verified even for the two-modes
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case and for a less general form of RBSDE (S) (see the counter-example in [
subsection 3.1]).

Clearly, our results generalize the related works in the literature, since our
RBSDE (S) is more E}neral in many features. Actually, the expected profits and

cost yields 7+and Y ~are respectively interconnected in the generators f;" and
f; . This dependence can be interpreted as a nonzero-sum game problem, where
the players’ utilities affect each other. Furthermore, the solutions Y+ and Y —*
are also interconnected in the barriers. Note that, the general barrier h; ;(-,y)
which is random and nonlinear, makes the dependence on the unknown process
implicit. This, allows one to consider more general switching cost, for instance
in the case of risk sensitive switching problem.

The remainder of the paper is organized as follows. Section 2 is devoted to
the assumptions. In Section 3, we state and prove the main result of the paper.

2 Assumptions

Let us introduce the following assumptions:
[H1]: For each i € A, ;' and f; satisfies:

T T
. 2 _ 2
(i) E(/O 7sup ’ff(t,?,o)‘ dt+/ 7sup |fi (t,?,O)’ dt) < 400.

;=0
(ii) The mappings (¢, 7 ) — £ (2, Y, 2 ) and (¢, Y, 2t ) — fi (¢, Y, 2 ) are Lip-
schltz contlnuous in (v, z ) umformly in t and are contlnuous in yJ for j € A7
(iil) f;" (¢, Y, ) and f; (¢, Y, ) are increasing in 37 for j € A=%. This assump-
tion means that the m-players are partners.
[H2]: For each i,j € A, h; ; satisfies:
() hi;(t,y) is continuous in (¢,y);
(it) h; ;(t,y) is increasing in y;
(i
(

i) hij(ty) < y. _ _
iv) There i 15 no sequence iy € /1 i € AT G € A7 and (.., oY)

SUCh that y - h11712 (tv ) )a - hm,ig (t7 yd)7 ey Yk—1 = hik,l,ik (tv yk)v yk =
hi, iy (t,y'). This means that there is no free loop of instantaneous switchings.

[H3]: For t € [0,T] and i € A, Bi(t), C'(t) and S(t) belong to S2.
[H4]: For any i € A the random variables & and ¢ are Fr—measurable and
belong to L2. Moreover we assume that

€5 > max hij(T,61) V(& +C(T)), and & <ST)A (& + B(T)).
oA

[H5]: For every i € A, the processes (B'(t))o<t<r and (S(t))o<t<7 are semi-
£ t

martingales of the form B'(t) = B*(0) —|—/ U'(s)ds +/ Vi(s)dW, and
0 0

t t

Si(t) = Si(O)—i-/ U'(s)ds+ | V(s)dW, where (U*(t), U*(t)) and (V(t), Vi(t))

0 0
are respectively (R)2 and (R?)2-valued JF; progressively measurable processes
which are dt ® dP-square integrable.
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3 Main result

Next we state and prove the main result of this paper.

Theorem 1. Assume that [H1]-[H5] hold. Then for all i € A, the system of
RBSDEs (S) admits a continuous minimal solution (Y Z%¢ K+4).

Proof. The whole proof is performed in six steps.

Step 1: Construction of Picard’s sequence of solutions

Consider the following sequence of RBSDEs defined recursively, for i € A and
t € [0,T], as follows: For n = 0 we start with the following BSDE:

T T
Y0 = ef +/ I (s, Y P00, 2000 ds —/ ZHH0aw,, (7)
t t
and RBSDE:
Y=g / I, Y0, 2000 ds — / Z5M0AW, — K K
t t
Y, < St A (Y0 4 Bi(t)), (8)
0= / [S1 ) A (G0 4 BUW) = Y0
0
where ij'(s,y,z’) = 7inf fiH (s, 9/, 7") and L_(s,y,zi) = 7inf (8,9, 2.
Yi=yY R

Now, for n = 0 consider the following system of RBSDEs:

T
-1 — — i, —,i,1 —,i,1
Y, =& _/ Z7 M aws — Kot + K,

t 7
t

+ / f(s, Y0y Oy oy 0y mml Z i g,

t
Y, < S A (Y0 + B)),

T
0= /O {SZ(t) A (YH 4 Bi(t) — Y[’”l} di;,
+,7,1 T 2,1 +,7,1

3y ,0,1 +,1, 3y

Y, :gj_/ Z5 AW, + K20 — K

t
t
T
+ +,1,0 +,:-1,0 y+,4,1 y+,i+1,0 +,m,0 7+,i,1
+/ fir (s, Y,mmP )Y LYY, oo, Y, ,Z 0 ds,
t

Y 2 max oY,V (Y 4+ 00w),

T
0= / {yﬁ’l — max h, (¢, Y;70) v (Y;”Z’l + Ci(t))} dK;0(9)
0 JeAT?

Note that by [H1](i) and (ii) we have that LJF and f are uniformly Lipschitz
continuous in (y, z*) and satisfy the following integrability condition

E{ /OT (\L?L(t,O,O)P + |Lf(t,0,0)|2) dt} < +00.
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Thus, from [I4] it follows that for each ¢ € A BSDE (7)) admits a unique solution
(Y20 Z+:40) € §2 x M%2. Thus, there exists a constant C' > 0 such that

E | sup
te[0,T]

(Si(t) A (Y0 4 Bi(t)))+ < C < +o0, (10)

and thus in view of [I0, Proposition 2.3] we deduce that RBSDE ({8]) has a unique
solution (Y =40, 740 K=40) € §2 x M2 x k2.

As a by product, under the assumptions [H1]-[H4], in view of [10, Proposition
2.3] the solution (Y %1 Z=&1 K1) € §2 x M%2 x K? exists and is unique.
This in turn, in view of the following estimate, which holds due to assumption
[H2](iii), [H3] and the fact that Y —%! € 82

2

E | sup
te0,T]

<C < +oo,

+
- +.3,0 =1 i
(jrél/?zci hij(t,Y,77") v (Yt +C (t)))

combined with [I0, Proposition 2.3], leads to the existence of the unique solution
(il z+il gHil) e §2 x M2 x K2
Next, for n > 1, consider the following system

S

T
—nt+l _ e— - —,1,n —i—1,n —,i,n+1 —,i+1,n
Y;& *gz +/ fz (S,Y; 3"'7Y a}fs aY; PR
t

T

. ,}/S—,m,n’ Zs—,i,n+1)d8 _ / Zs—,i,n—i-ldWS _ K,l_«’l’n+1 + Kt—ﬂ,n-‘d’
t

Yt < S A (Y 4 BU(1),

T
0 :/ {Sz(t) A (Yt-l—,z,n +Bz(t)) _ }/t—,z,n-i-l} th_’Z’n+1,
0

T
+,i,n+1 _ 4+ + +,1,n +,i—1,n +,i,n+1 +,i+1,n
Y, —5i+/ (s, Yoobm L Yyt yohita
t

S

T
o ,}/S-Q—,m,n7 Z;—,i,n+1)ds _ / Z+,z,n+1dWS + K;:ﬂ,n-‘rl _ Kt-hl,n-i-l’
t

YU > max b (8,0 v (YN 4 O,
jeA™"

T
0= / |:Y;+7177’L+1 _ Hl/?,XA hi,j (t, Y;/+7]’n) v (Y;_Jﬂ’b‘i‘l + Cz(t)):| th'f‘ﬂan-‘rl.
0 jea=r

(11)
Based on the arguments used previously, we can show by using an induction
argument that for any n > 2, the system of RBSDEs has a unique solution
(}/—Q—,i,n7Z+,i,n7[(+,i,n,1/—,i,n7 Z—,i,n’K—,i,n) c (82)2 % (Md’2)2 % (K:Q)Q, Vi e A.
Step 2: Convergence of the sequences (Y+7%")
Let us set,

F(s,y,2) = sup f7(s,7,2") and f(s,y,2") = sup fi (s, 7,2

7 yi=y Twyi=y

n>0
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Note that by [H1](i) and (ii) we have that ﬁ_ and f; are uniformly Lipschitz
continuous in (y, 2*) and satisfy the following integrability condition

T
B{ [ (1F 0.0 +15 (0.0P) drf < 4. (12)
0
Consider the following BSDE
|§ |+/ f (s YS,Z;)|ds—/ ZsdWs.
t

It follows from [14] that this BSDE admits a unique solution Yy, Z,) € 82x M2,
Next, let (Y%, Z%, K%) be solutions of the following system of reflected BSDEs,
for any ¢ € A and ¢t € [0, T, as follows

Z\f+|+2|f |+ Ci(T |+/ Z|f+s 7., 2 ds
T . o . . .

—/ ZydW, + K — K,
t

Y > max hij(t, Vi) v (Y + Ci(1)),
jeA—"

/OT [yl — max hy j(s,Y7) V (Vs + C'(s ))] dKi = 0. (13)

jeEATT

By using previous arguments, and thanks to the fact that XAQ € 82 and assump-
tion [H3], applying [I, Theorem 3.1] yields that this RBSDE admits a solution
(Yi,Z1, K') € 82 x M%2 x K2. Moreover, the following holds Next, by using
an induction argument, plus a repeated use of the comparison theorem, we can
easily show that for any i € A, ¢ € [0,T], Vn:

}/;_771;0 S }/t_;lvn S Y;_Jﬂ’b'f‘l S }/} and }/t"l‘ﬂyo S }/}"Fa“n S }/t+)l7n+1 S Y;i’ a.s.

(14)
Consequently, we deduce the following

supE[ sup [V;"[] <E[ sup [¥;""*]] + E[ sup [V{[?] < oo, Vi € 4, (15)
n>1  t€[0,T) t€[0,T] t€[0,T]

supE[ sup |Y;""?] <E[ sup |Y; )2 +E[ sup [V;]?] < o0, Vie A (16)
n>1  t€(0,T) te[0,T] te[0,T]
Next, from combined with and we deduce that the sequences
{y+in}, o and {Y %"}, >0 admit limits. Therefore, let Y% and Y =% i € A
be two optional processes which are respectively the limits of Y %" and Y %",
Applying Fatou’s Lemma and the dominated convergence theorem, we obtain

E[ sup |Y;5?] < o0, lim IE/ Y5 — v Pdt =0, ie A (17)
0

t€[0,T n—00
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Step 3: Uniform estimates for the sequences {(Zii*’L,Ki*i’")}nzo, ieA
By [H2](iii), we obtain in view of the facts (Y, Z;) € 82 x M%2 (Y, 71 K') €
8% x M4? x K? and combined with [H3] the following estimate of the
barriers of RBSDE : forallm>1landalliec A

2

+
E | sup ( max h; ;(t, Y, ™) v (v 4 C’l(t))> < +oo, (18)
0<t<T j€A—?
E | sup (S’(t) A (Y0 4 B’(t))) < +00. (19)
0<t<T

Finally, with the estimates , 7 and at hand, applying the results
n [I0] we obtain that

T . .
supE[/ |ZE 2 dt] < 00, supE|KE"? < o0, i € A (20)

n>1 0 n>1

Step 4: Continuity of the limit processes Y% and Y7, i € A.

To this end, let us first establish the absolute continuity of the increasing process
K=" w.r.t t for every n > 0.

We will first show that the claim holds true for n = 0. Let

“t = Sz (n-i-,z,o + Bz(t)) _ )/t-&-,z,O —|—Bl(t) _ (}/t-‘r,z,o + Bl(t) _ SZ)

Applying Ito-Tanaka formula to =}, and in view of assumption [H5] we obtain
El=15} +/ Mids +/ NidW, — L; (21)

where {L},0 <t < T} is the local time at 0 of the continuous semimartingale
Y, Bi(1) - 51},
i ) + ,i,0 14,0 @ FTi
My = _1{Yt+’“O+B7'(t)>S’i(t)}<_ [0 2000 + Uy - Ut)
_i;r<s7ys+,i70’ Z;-J,O) + Uti7

and
' 2,0 i 2,0 i _ Yt
N} =2z yvi— 1{Y+,i,o+Bi(t)>Si(t)}(Zt+ _|_Vtz_VtZ).

Note that f+ and fZ are uniformly Lipschitz continuous in (y, z%). Thus, using

the fact that (Y740, Z+:40) and (Y =40, Z=40) belong respectively to S? x M %2,
yields that there is a constant C' > 0 such that

T
E{ / (L5 @Y 0, 20 O 2 4 | (17, 200 ) dt} <C (22
0

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_43 |



https://dx.doi.org/10.1007/978-3-030-50436-6_43

10 R. Belfadli et al.

Moreover, in view of the above and assumption [H5], there exists a constant
C > 0 such that

T
E / (|M{)* + [N} P)dt| < C < +oo. (23)
0

Then, applying [I0, Proposition 4.2] yields for all t < T

0<dK;"" <1

+
{Y[’i’O::Z} |:fl_(5, }/si’i’o’ Z;’i’o) + MZ:| dt? (24)

which means that, K %% is absolutely continuous w.r.t. t. Next, in the same
spirit, we can show, thanks to [I0, Proposition 4.2], for all n > 0 that the
process K —"*1 is absolutely continuous w.r.t. t. Furthermore, we can obtain
that: there exists a constant C' > 0 such that for all n > 0 and i € A,

T .
K —iny 2
/ ( ) dt
) dt
Notice that, by combining [H1](ii) together with (I5]), (16), (20)we obtain that
there is a constant C' > 0 such that

T
sup E{ /
n>0 0

E

<C. (25)

- —,1,n —i—1n —,i,n+1 —,i+1n —,m,n
fi (t7}/t 7"‘7}/;5 7Y:t 7}/;5 u"'7}/t ’

. 2
Z{’”‘“)‘ dt} < C < 4oo. (26)

Next, in view of estimates (20)), and (26), we deduce that there exists a
i+l .

subsequence along Whiqh all ((lH.{tT)OgtST)nZOv ((Z{’Z’nﬂ)qgth)nzo and

((fzf <t7 Yt_’an s ’Yt_ﬂ_lmv Y;t_717n+1> Yt_ﬂ-‘rl,na R Y;—,m7n7 Z75_7z7n+1)>0StST)n20

converge weakly in their respective spaces MB2Z M2 and M2 to the processes

(K “o<e<r, (Z; "Jo<i<r and (97" (t))o<i<r-
Next, for any n > 0 and any stopping time 7 we have

-
Y—,z,n+1 — YE)—,z,n-l-l _’_K‘r—,z,n+1 +/ Zs—,z,n—&-lst
0

_ / f; (t, Y'S—,l,n7 o ,Y"S—,i—l,n7 Y*S—,i,n—i-l7 Y'S—,i-i-l,n’ o Y;—,m,n7 Zs_’i’n+1)d8.
0
Taking the weak limits in each side and along this subsequence yields
Yo=Y, - / 0 (s)ds + / ko tds + / Z7'dB,, P-as.
0 0 0

Since the processes appearing in each side are optional, using the Optional Sec-
tion Theorem (see e.g. [3], Chapter IV pp.220), it follows that

t t t
Y, =Y, _/0 0 (s)ds —|—/0 k'ds —|—/0 Z;'dBs, Yt < T, P-as. (27)
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Therefore, the process Y = is continuous. Relying both on Dini’s Theorem and
on Lebesgue’s dominated convergence one , we also get that

lim E | sup |V, """ -V, "|?| =0. (28)
n— 00 0<t<T

We will now focus on the continuity of the sequence of processes (Yt+’i)0§t§T,
Vi € A. Actually, applying Peng’s Monotone Limit Theorem (see [15]) yields
that for every i € A, the limit process Y™ is cadlag. Based on what has been
already shown in previous steps, by mimicking the arguments of [I5] we can
easily show that there exist two processes K+ € K2 and Z+% € M%?2 such that
Y+ satisfies the first equation of RBSDE (8S). Moreover, passing to the limit in
the fifth inequality of RBSDE (T1)), implies that Y;™* > S, t € [0,T], i € A.
Thus, for i € A, (Y, ZH1 Kt+*) satisfies

T T
Y=g+ / [ (s, Y 250 ds — / ZEAW, + Kyt = K
t t

+,4 +,i
VARCA

(29)

It remains to prove the minimal boundary condition. Next, consider the following
RBSDE whose solution exists thanks to [16]:

T
Vi 1 il i yitl m i
Y, =§j+/ s, Yol v iy by ey b 2 ds
t

T
—/ ZHaw, + K- K
t

T
V5> 55 and / [Vt - s ki =, (30)
0

Note that RBSDEs and have the same lower barrier. In fact, since 24—,1‘
is the smallest f;"—supermartingale with lower barrier St+ " we have that for any
ie A Y <YM (see [I6, Theorem 2.1]). On the other hand since for any
ieAandn>1,Y,""" <y and Y, < ¥, applying the comparison
theorem in view of [H2](ii) yields that Y;™""™ < ¥;™ and then passing to
the limit implies that Y[‘"i < }N/ﬁl Summing up we have that for any i € A,
Yf’i = f”fl From the uniqueness of the Doob-Meyer decomposition, it follows
that Zj’i = Zf’i, dt x dP-a.s., and Kj’i = I?;” for any 0 <t < T, P-a.s. Then,
forie A, (YT, ZT¢ K% satisfies RBSDE ([5)) but with the following minimal
boundary condition

T
/ [Y;’Z — max hy; (s, V.27 ) v (V7 4 C’l(s))] dK" =0. (31)
0 JeEA?

From the first equation of and since the process .Kj s increasing, it follows
that AY;"" = —AK;”" < 0. Assume that AY;T" < 0, for some (i1,t*) €
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A x [0,T]. Thus AK;I’“ > 0. From the minimality condition , we have

}/tir’_zl = max hil,j(t*,Y;j’_j) \Y (Y;:’Z‘l + Cil (t*))

jEATL
Let i3 € A~% be the optimal index for which the maximum is attained. Thus,
hiy iy (8, Y 2) v (Y00 4+ OB () = Vi
> yn
= hiy i (8, Y,572) V(Y0 4 O (EY).
(32)

This obviously yields that Y5 = h;, ;, (t*, V;7") > hy i, (t*,Y;5™), and thus
Ath’l2 < 0. Repeating the above procedure we obtain for i;, € A~

AY; P <0, and Yt =h LYY k=2, m.

ik7ik+1(

Since each iy can take only values in A which is a finite set, then there must
be a loop in A. we may assume w.l.o.g. that i1 = 41 for some k£ > 2 noting
again that the ix’s are mutually different i.e. for each k, iy, € A~%-1. Therefore,
we have Y;ﬁt’il = hi17i2 (t*vY;&lL’jz)v s ’Y;t,“Pl = hik—l,ik (t*,Y;ff’“)7 and Ytt’lk =
hi,. iy (t*, Y5, This contradicts assumption [H2](iv). Consequently, AV, =
AK' =0, t € [0,T], Vi € A. Hence, the processes Y and K+ i € A are
continuous.

Step 5: Identification of the limit

Next, we show that

lim E{ sup [v;7"" -yt

T
2 +,i,n +,712 +,i,n +,712
+ K7 - Ky +/ Z;00 = Z7Adt = 0.
ool 0<i<T ‘ T Tl 0 |t t | }

Actually, since Y 5" A Y+ and Y is continuous then relying both on Dini’s
Theorem and on Lebesgue’s dominated convergence one , we get that

lim E | sup |Y;7"" —Yt+’i|2] =0. (33)

n—0o0 0<t<T

2 (n,p>

Further, we can easily show by applying It6’s formula to |Y,5"" —y, 547
0) and using standard arguments (sec e.g. [10]) that

lim ]E[/ |z = ZE P+ | K — KP4 KT — / ko'ds)?]) = 0.
0 0

n—oo

From this, and [H1](ii) combined with (27)), it holds that
Soi_(t):fi_(tv?t_vzt_i)’ 0<t<T.

Next, passing to the limit in the second inequality of RBSDE , yields that
Y, " <S5, t€]0,T)], i € A. Furthermore, thanks to the weak convergence of
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((ngt,w,n)OStST)n21 to the process k¢ and the strong convergences and

7 we deduce that

T
0 :/ l:Sz(t) A <Y;+,i,n —|—Bi(t)> _Yt—,i,n-‘rlil th—,i,n-i-l
— [5{* - Y;ﬂ} k7t =0, asn — +oo.
0
In fact, this implies that (Y% Z—¢ K= := [ k;'ds) is a solution to the sec-
ond part of RBSDE (S). Summing up (Y *, Zﬁvi7 K*1) is a solution of RBSDE
(S). Finally, it remains to show that this solution is the minimal one.
Step 6: Minimality of the solution of RBSDE (S)
Let (Y*+i, Z+4 K+i Y= Z=i K1) be another solution of RBSDE (S). Since
yt+tin <yY+tiagnd Y0 < Y*’i, for all n > 0, and thanks to the monotonicity
of h; j applying the comparison theorem yields that for each i € A: Y 4" < y+i
and Y 7" <Y 7' for all n > 0. Passing to the limit when n — oo implies that
for each i € A: Yt* < Y*+# and Y= < Y, which is the desired result. This
ends the proof of Theorem [I}

4 Conclusion and perspectives

In this paper we have proved the existence of a continuous minimal solution
to RBSDE (S) which is arising from BSOSPs. Let us comment on a possible
generalization of the results obtained in this paper. Actually, the full balance
sheet case is still an open problem and constitutes a challenge. By the full balance
sheet case we mean that we consider the two sides of the balance sheet. Indeed,
in this case the expected cost in mode 4, Y ¢ should rise above the following
barrier

min 1 ;(t, Y, ) A (Yt” + Bi(t)), (34)

jeA—?t
instead of S; " where I; j is a real nonlinear random function satisfying [H2],
except for [H2]—(iii) which is replaced by ; ;(t,y) > y. We want to stress out
that, the new assumption [H2] is satisfied when [; ; takes the particular form
lij(-,y) = y + gi,; where g; ; is the switching cost from mode i to mode j.

A full BSOSP amounts to establishing existence of a continuous solution to
the system of RBSDEs (S), but with the upper barrier for Y= Vi € A.
Note that, as in the proof of Theorem [1| (Step 4) the absolute continuity of
the process K; ™ w.r.t. ¢ will play a primordial role to derive convergence of
the corresponding approximating sequence. To do so we need to use the Ito—
Tanaka formula (see Step 4), which makes it difficult to solve the system of
RBSDEs (S) for the full balance sheet case. Note that even in the case when the
functions h; ; and [; ; take the particular forms respectively h; ;(-,y) =y — ¢; ;
and l; ;(-,y) = y + gi,; let alone the general case, the question of existence of
solutions to the corresponding system of RBSDEs (S) for the full balance sheet
case, is still open. This issue was discussed in [5] and in [0] in the mean field
case.
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