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Abstract. Radial basis functions (RBF) are widely used in many areas especially 

for interpolation and approximation of scattered data, solution of ordinary and 

partial differential equations, etc. The RBF methods belong to meshless methods, 

which do not require tessellation of the data domain, i.e. using Delaunay triangu-

lation, in general. The RBF meshless methods are independent of a dimensional-

ity of the problem solved and they mostly lead to a solution of a linear system of 

equations. Generally, the approximation is formed using the principle of unity as 

a sum of weighed RBFs. These two classes of RBFs: global and local, mostly 

having a shape parameter determining the RBF behavior. In this contribution, we 

present preliminary results of the estimation of a vector of “optimal” shape pa-

rameters, which are different for each RBF used in the final formula for RBF 

approximation. The preliminary experimental results proved, that there are many 

local optima and if an iteration process is to be used, no guaranteed global optima 

are obtained. Therefore, an iterative process, e.g. used in partial differential equa-

tion solutions, might find a local optimum, which can be far from the global op-

tima.  

Keywords: Approximation, Radial Basis Function, RBF, Shape Parameters, 

Optimal Variable Shape Parameters. 

1 Introduction 

Interpolation and approximation of acquired data is required in many areas. Usually a 

data domain is tessellated, i.e. meshed by triangles or tetrahedrons, using Delaunay tes-

sellation [8]. However, there are some complications using this approach: Delaunay 

tessellation is not acceptable for some computational methods (other criteria for the 

shape of elements are required) and for computational and memory requirements in the 

case of higher dimensions. Also, if used for physical phenomena interpolation, there 
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are additional problems with smoothness physical phenomena interpolation over result-

ing triangles or tetrahedrons. In the case of approximation, i.e. when the input data are 

to be reduced with regard to the values given, standard mesh reduction methods are 

complex as they are primarily designed for surface representation. 

Meshless methods based on radial basis function (RBF) are based on the principle 

partition of unity, in general [2][9][30]. They are used for computations [1], e.g. partial 

differential equations (PDE) [7][32][33], interpolation and approximation of given data 

[17][18], which lead to implicit representation [10][19][20] or explicit representation 

[11][12][13], impainting removal [27][28][31] vector data approximation (fluids, etc.) 

[26]. In the following, the RBFs for explicit representation will be explored more 

deeply from the shape parameter behavior and its estimation. 

The RBFs interpolation is defined as [7][21]: 

 𝑓(𝒙) = ∑ 𝑐𝑗

𝑀

𝑗=1

𝜑(𝑟𝑗) 𝑟𝑗 = ‖𝒙 − 𝒙𝑗‖ 

 

(1) 

where 𝑐𝑗 are coefficients and 𝜑(𝑟𝑗) is a RBF kernel, and 𝒙 ∈ 𝑅𝑑 is an independent 

variable in 𝑑-dimensional space, in general. If scalar values are given in 𝑁 points, i.e. 

ℎ𝑖 = 𝑓(𝒙𝑖), 𝑖 = 1, … , 𝑁, then a system of linear equations is obtained 

 ℎ𝑖 = 𝑓(𝒙𝑖) = ∑ 𝑐𝑗

𝑀

𝑗=1

𝜑(𝑟𝑗) 𝑖 = 1, … , 𝑁 

 

(2) 

This leads to a system of linear equations 𝑨𝒙 = 𝒃. If 𝑁 = 𝑀 and all points are distinct, 

then we have an interpolation scheme, if 𝑁 > 𝑀 than the approximation scheme is ob-

tained, as the system of equations is overdetermined [7][11][21][22]. 

However, in our case we use the interpolation scheme, i.e. 𝑁 = 𝑀, and used only 

points of extrema, inflection points and some additional points, using the RBF interpo-

lation scheme, to study estimation of a suboptimal selection of weights and shape pa-

rameters of the RBF interpolation. In this case, we obtain a system of linear equations: 

 [

𝜑1,1 ⋯ 𝜑1,𝑀

⋮ ⋱ ⋮
𝜑𝑀,1 ⋯ 𝜑𝑀,𝑀

] [

𝑐1

⋮
𝑐𝑀

] = [
ℎ1

⋮
ℎ𝑀

] (3) 

 

 
Fig.1. CS RBF functions 
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The RBF interpolation was originally introduced as a multiquadric method by Hardy 

[6] in 1971. Since then, many different RFB interpolation schemes have been developed 

with some specific properties  

The RBF kernel functions can be split to two main groups (just some examples): 

 Global functions:  

o Gauss - 𝜑(𝑟, ) = 𝑒−(𝜀𝑟)2
, 

o Multiquadric (MQ) - 𝜑(𝑟) = √1 − (𝜀𝑟)2,  

o Inverse multiquadric (IMQ) - 𝜑(𝑟) = 1/√1 − (𝜀𝑟)2,  

o MQ-LG - 𝜑(𝑟) =
1

9
(4𝑐2 + 𝑟2)√𝑟2 + 𝑐2 −

𝑐3

3
ln(𝑐 + √𝑟2 + 𝑐2) [33] 

o Thin Spline (TPS) 

 𝜑(𝑟) = 𝑟𝑘 , 𝑘 = 1,3,5, .., 
 𝜑(𝑟) = 𝑟𝑘  ln 𝑟 , 𝑘 = 2,4,6, ..  etc. 

 Local - Compactly Supported RBF (CSRBF), e.g. 

  𝜑(𝑟) = (1 − 𝑟/𝜀)+
4 (1 + 4𝑟/𝜀))     0 ≤ 𝑟 ≤ 1  

“+” means zero if a function argument is out of the interval. 

Some of those are presented at Table 1 and Fig.1. 

New RBF functions were recently introduced by Menandro [16]. 

Table 1. Typical examples of “local” functions – CSRBF (“+” means – value zero out of 〈0,1〉) 

ID Function ID Function 

1 (1 − 𝑟)+ 6 (1 − 𝑟)+
6 (35𝑟2 + 18𝑟 + 3) 

2 (1 − 𝑟)+
3 (3𝑟 + 1) 7 (1 − 𝑟)+

8 (32𝑟3 + 25𝑟2 + 8𝑟 + 3) 

3 (1 − 𝑟)+
5 (8𝑟2 + 5𝑟 + 1) 8 (1 − 𝑟)+

3  

4 (1 − 𝑟)+
2  9 (1 − 𝑟)+

3 (5𝑟 + 1) 

5 (1 − 𝑟)+
4 (4𝑟 + 1) 10 (1 − 𝑟)+

7 (16𝑟2 + 7𝑟 + 1) 

 

They generally depend on a shape parameter, which must be carefully set up. Unfortu-

nately, global functions lead to ill-conditioned systems, while CSRBF causes “blobby” 

behavior [24]. 

In this contribution, a slightly different problem is solved. Consider given points of 

an explicit curve; we aim to approximate it, strictly complying with the following re-

quirements for the approximated curve and we want to approximate it having strict the 

following requirements for the approximated curve: 

 it has to pass through all points of extreme and also points of inflection 

 it keeps the value at the data interval border 

 

Usually, the approximation case is solved using least square error (LSE) methods. The 

LSE application leads to good results in general, however, the LSE cannot guarantee 

the above-stated requirements. On the other hand, signal theory says that the sampling 

frequency should be two times higher than the highest frequency in the data. Also, dif-

ferent parts of a signal might have different high frequencies. 

Therefore, the signal reconstruction should follow the local properties of the signal, 

if it would respect only the global properties, the compression ratio of the approximated 
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signal would be lower and the sampling theorem is fulfilled. However, in practical ex-

periments error behavior at the interval borders is to be improved by adding two addi-

tional points close to the border. 

It means, that formally standard RBF interpolation scheme is obtained in which only 

points of extrema and inflection, points at the interval borders and two additional points 

are taken into account. Additional points only slightly improve interpolation precision.  

However, the majority of RBFs depends on the “magic” constant – a shape param-

eter, which has a significant influence to the robustness, stability and precision of com-

putation. Usually, some standard estimation formulas are used for the constant shape 

parameter, i.e. all RBFs have the same shape parameter. In the following, the case, 

when each kernel RBF has a non-constant parameter is described. 

2 Determination of RBF Shape Parameters 

Signal reconstruction using radial basis functions has to respect the basic requirements 

stated above. The sampling frequency should be locally two times higher than the high-

est frequency as the sampling theorem says. Therefore, if the values at the points of 

extrema and points of inflections are respected together with the values at the interval 

border, the sampling theory is fulfilled [15]. 

The question of choosing the shape parameters is not considered, yet. The global 

constant shape parameter, i.e. for all RBFs in the RBF approximation is to be used, the 

minimization process can be used  

 

 𝜀 = 𝑎𝑟𝑔𝑚𝑖𝑛 {‖ℎ𝑖 − ∑ 𝑐𝑗

𝑀

𝑗=1

𝜑(𝑟𝑖𝑗 , 𝜀𝑗)‖} 𝑟𝑖𝑗 = ‖𝒙𝒊 − 𝒙𝑗‖ 

 

(4) 

where 𝜀𝑗 = 𝜀𝑘 for all 𝑗, 𝑘, i.e. all shape parameters are the same.  

However, if the shape parameters can differ from each other, the approximation will 

be more precise with fewer reference points, which also speed-up the RBF function 

evaluation. The question is, whether there is a unique optimum. Therefore, the “Monte-

Carlo” approach was taken and the minimization process was initiated for different 

starting vector (uniformly generated using Halton’s distribution) of shape parameters 

using Gauss function. 

 

 𝜺 = 𝑎𝑟𝑔𝑚𝑖𝑛 {‖ℎ𝑖 − ∑ 𝑐𝑗

𝑀

𝑗=1

𝜑(𝑟𝑖𝑗 , 𝜀𝑗)‖

2

} 
𝑟𝑖𝑗 = ‖𝒙𝒊 − 𝒙𝑗‖ 

𝜺 = [𝜀1, … , 𝜀𝑀]𝑇 

 

(5) 

It can be seen, that finding optimum shape parameter vector is computationally expen-

sive. In the following, only one representative example from experiments made is pre-

sented.  
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3 Experimental results 

Several explicit functions 𝑦 = 𝑓(𝑥) have been used to understand the behavior of the 

optimal shape parameter vector determination. 

Table 2. Examples of testing functions. 

ID Function ID Function 

1 𝑦 = sin(15𝑥2 + 5𝑥) 2 𝑦 = cos(20𝑥) /2 + 5𝑥 

3 𝑦 = 50(0.4 sin(15𝑥2) + 5𝑥) 4 𝑦 = sin(8𝜋𝑥) 

5 𝑦 = sin(6𝜋𝑥2) 6 𝑦 = sin(25𝑥 + 0.1) /(25𝑥 + 0.1) 

7 𝑦 = 2 sin(2𝜋𝑥) + sin(4𝜋𝑥) 8 𝑦 = 2 sin(2𝜋𝑥) + sin(4𝜋𝑥) 
+ sin(8𝜋𝑥) 

9 𝑦 = 2 sin(𝜋(2𝑥 − 1)) 

+ sin(3𝜋(2𝑥 − 1/2)) 

10 𝑦 = 2 sin(𝜋(1 − 2𝑥)) 

+ sin(3𝜋(2𝑥 − 1/2)) 

11 𝑦 = 2 sin(𝜋(2𝑥 − 1)) 

+ sin(3𝜋(2𝑥 − 1/2)) − 𝑥 

12 𝑦 = 2 sin (2𝜋𝑥 −
𝜋

2
) 

+ sin(3𝜋(2𝑥 − 1/2)) 

13 𝑦 = atan(10𝑥 − 5)3 
+ atan(10𝑥 − 8)3/2 

14 𝑦 = (4.88𝑥 − 1.88) ∗ 
sin(4.88𝑥 − 1.88)2 + 1 

15 𝑦 = exp(10𝑥 − 6) ∗ 
sin(5𝑥 − 2)3 + (3𝑥 − 1)3 

16 𝑦 = tanh(9𝑥 + 1/2) 9⁄  

 

The experiments were implemented in MATLAB. The experiments proved, that 

there are several different shape parameters vectors, which give a local minimum of 

approximation error. In all cases, the error of the function values was less than 10−5, 

with a minimum number of points.  

In the following, just two examples of RBF approximation are presented, additional 

examples can be found at [34]. Fig.2 presents two functions and their RBF approxima-

tion using found points of importance. Fig.3.a presents shape parameters for each local 

optima found; the blue one is for a starting vector with an optimal global shape constant 

for all RBFs. Fig.3.b. presents computed weights of the RBF approximation. 

The radial distances in the graphs are transformed monotonically, but nonlinearly 

to obtain “visually reasonable” graphs as: 

 

𝜀 = 1 − 𝑒−2(𝜀−𝜀𝑚𝑖𝑛) (𝜀𝑚𝑎𝑥−𝜀𝑚𝑖𝑛)⁄  𝑐 = 1 − 𝑒−2(𝑐−𝑐𝑚𝑖𝑛) (𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛)⁄  

Transformation for the shape parameters Transformation for the RBF weights 

(all the values of  𝑐 were taken as 𝑎𝑏𝑠(𝑐) ) 
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Function F1 (a) Function F2 (b) 

Fig.2. Two examples of an approximated functions with approximation 𝑒𝑟𝑟𝑜𝑟 < 10−5 

 

  
Shape parameters for local optima F1 Weights for local optima F1 

  

  
Shape parameters for local optima F2 Weights for local optima F2 

Fig.3. Diagram of shape parameters vectors (a) and weights for local optima found (b) 
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It can be seen, that the shape parameters for each local optimum changes signifi-

cantly, while the computed weights are similar. The experiments made on several ex-

plicit functions proved a hypothesis, that there are several local optima and for all of 

those a similar behavior was identified. 

However, it leads to a serious question, how the RBFs use in the solution of ordinary 

and partial differential equations, in approximation and interpolation, etc. is a compu-

tationally reliable method, as results depend on “good” choice of the vector of shape 

parameters. 

Detailed test results for several testing functions can be found at [34] 

http://wscg.zcu.cz/RBF-shape/contents-new.htm. 

4 Conclusion 

In this contribution, we shortly described preliminary experimental results in finding 

optimal shape vector parameters, i.e. when each RBF has a different shape parameter, 

which leads to the higher precision of approximation of the given data. The experiments 

were made on different explicit curves to prove basic properties of the approach. The 

experiments proved that there are several local optima for the shape vector parameters, 

which leads to different precision of the final approximation. However, it should be 

stated, that the approximation was made with relatively high compression and the error 

was lower than 10-5, which is in many cases acceptable. The given approach approxi-

mates data having different local frequencies will be explored in future together with 

an extension to explicit functions of two variables. The presented approach and results 

obtained should also have an influence to solution of partial differential equations 

(PDE), as the precision of a solution depends on good shape parameter selection. 

The presented approach will be studied especially for the explicit functions of two 

variables, i.e. 𝑧 = 𝑓(𝑥, 𝑦), where order is not defined and finding the nearest neighbors 

is too computationally expensive in the case of scattered data.  
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