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Abstract. The Van der Waals (VdW) equation of state is a popular
generalization of the law of ideal gases proposed time ago. In many situ-
ations, it is convenient to compute the characteristic curves of the VdW
equation of state, called binodal and spinodal curves. Typically, they
are constructed through data fitting from a collection of data points
represented in the two-dimensional pressure-volume plane. However, the
resulting models are still limited and can be further enhanced. In this pa-
per, we propose to extend this polynomial approach by using a rational
function as a fitting function. In particular, we consider a rational free-
form Bézier curve, which provides a global approximation to the shape
of the curve. This rational approach is more flexible than the polynomial
one owing to some extra parameters, the weights. Unfortunately, data
fitting becomes more difficult as these new parameters have also to be
computed. In this paper we address this problem through a powerful
nature-inspired swarm intelligence method for continuous optimization
called the bat algorithm. Our experimental results show that the method
can reconstruct the characteristic curves with very good accuracy.

Keywords: equation of state · characteristic curves · Van der Waals
equation · data fitting · rational curves · bat algorithm

1 Introduction

Equations of state (EoS) are key in several fields such as physics, thermodynam-
ics, chemical engineering and many others. Roughly speaking, they are algebraic
expressions that describe the relation between physical variables such as tem-
perature, T , pressure, P , and volume, V , for a blend or a component. Therefore,
they can be used as predictors of the behavior of thermodynamic systems under
different conditions [14].
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Different EoS have been defined in the literature. The simplest and most
widely known is the ideal gas law, given by:

P.V � n.R.T �
m

M
.R.T (1)

where the mass, the molar mass and the number of moles are represented by
the variables m, M and n, respectively. As usual, R represents the universal gas
constant, whose value was used as R � 0.082 L.atm.mol�1.K�1. This equation is
adequate for high temperatures and low pressures (i.e. about 1 atm). Nonethe-
less, incurs inaccuracies when applied to other conditions. Consecuently, the
equation has been modified throughout the years. A modification was proposed
in 1873 by Johannes D. Van der Waals. This modification introduces two real,
positive parameters, a and b, that account for the forces of interaction between
molecules and molecular size, respectively [10]. This equation is referred to as
the Van der Waals (VdW) Equation of State and is expressed as follows:

�
P �

a

Vm
2

�
pVm � bq � R.T (2)

where Vm is the molar volume. By setting affix the temperature T in (2), and
plotting the variables of pressure P vs. volume V , an isotherm can be obtained
(go to Section 2 for details). A phase diagram can be built by displaying and
analysing isotherms for several values of T . This diagram will set the boundaries
of the different regions of solid, liquid, and gas phases. These boundaries are
defined by curves of non analytic behavior, and indicate the limit in which phase
transitions take place. In particular, the gas-liquid transition can be explained
by the construction of the characteristic curves: the binodal curve, beneath which
two different phases can coexist, and the spinodal curve, that defines the unstable
region in a system. From now on and for convenience reasons these curves will
be referred to as binodal and spinodal respectively.

In general, it is not possible to analytically calculate these curves. They
have to be computed by performing data-fitting of a collection of 2-D points
previously obtained for distinct isotherms. The sequence of data points that
define the binodal consists of the roots placed farthest to the left, the critical
point (in which liquid and gas phases are indiscernible), and the roots placed
farthest to the right. On the other hand, the spinodal is defined, from right to left,
by the local maxima, the critical point, and the local minima of the collection
of isotherms. Numerical procedures are used to determine both sequences of
points. Then, the characteristic curves are obtained using polynomial data fitting
(see [1, 2, 4, 5, 12] for details).

The organization of this paper is the following: The problem to be solved is
presented in section 2 as a continuous, nonlinear optimization problem. Section
3 offers an insight into the swarm intelligence approach used in this work: the
bat algorithm. Section 4 describes in detail the methodology proposed, and the
experimental results are reported in section 5. Finally, the main conclusions are
presented and some ideas for future work are explored.
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2 Problem to be Solved

2.1 Background

In this paper, we consider the VdW EoS expressed as (2). With some algebraic
manipulation and rearranging, it can be obtained an expression for the relation
between V and P , for any given T . Hence, for a set of temperatures, being
T1, T2, . . . , TM , their respective isotherms can be determined, resulting in a set
of curves in the P–V plot. Logically, each temperature will have its associated
isotherm. Multiplying the expression by Vm2{P , and rearranging, the result is a
cubic polynomial:

Vm
3 �

�
b�

RT

P



Vm

2 �
a

P
Vm �

ab

P
� 0 (3)

which will have one or three real roots. It will be the case that only one real
root exists for values of temperature, T , larger than the critical value of Tc,
known as the critical temperature, and being characteristic of each substance.
The second case, three real roots, happens for temperatures lower than Tc, when
the isotherms oscillate up and down. The isotherm corresponding to T � Tc is
associated with a triple root, which defines the critical point. The scope of this
work will be centered around the case of T   Tc; the three real roots linked to
each correspondent isotherms will be named as R1, R2 and R3. It is worthwhile
to mention that the end roots, R1 and R3 are respectively associated to the
liquid phase and vapour phase.

Given an scenario in which a temperature T   Tc is raised until meeting the
critical value, T � Tc, it occurs that the molar volume of the saturated liquid
is increased, while in the case of the saturated vapor, the molar volume de-
creases. This saturated states represent the boundary between the single-phase
region (for liquid or vapour respectively), and the coexisting-phases region (liq-
uid/vapour). Mathematically, this can be translated as the two end roots, R1 and
R3, moving towards each other as the temperature is raised, until they merge in
the critical point. This means that at the critical point, liquid and vapour are
indistinguishable. The critical values associated with the VdW EoS of a gas are
only dependent on the previously-mentioned a and b parameters. This can be
proved as follows:

Vc � 3.b, Pc �
a

27b2
, Tc �

8a
27bR

(4)

Working with dimensionless variables by considering the reduced tempera-
ture, pressure and volume:

pTr, Pr, Vrq �

�
T

Tc
,
P

Pc
,
V

Vc



(5)

Note that the molar volume, Vm, now is referred to as V for simplicity.
Substituting and rearranging terms, Eq. (3) becomes:

V 3
r �

1
3

�
1 �

8Tr
Pr



V 2
r �

3
Pr
Vr �

1
Pr

� 0 (6)
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The isotherms for T   Tc exhibit a surprising behavior: if the volume is
decreased, then the pressure increases, falls, and then increases again, describing
a fluctuation; suggesting that the pressure of certain molar volumes can decrease
as a consequence of compressing the fluid, which is associated with a negative
isothermal compressibility, and therefore, identified as an unstable phase.

One way to fix this deficiency was proposed by James Clerk-Maxwell in [11],
and is now referred to as Maxwell’s construction, or Equal area rule. Basically, it
proposes solving the situation by tracing a horizontal line through the fluctuating
curve, so that it connects the dew point and the bubble point, in a way that the
areas enclosed between the curve and the horizontal line would be equal. This
horizontal line is called tie line.

2.2 Binodal and Spinodal Curves: Defining the Data Points

Let us examine how are the data-points of the binodal and spinodal obtained. In
the case of the binodal, the first step is to define a set of increasing temperatures
T1   T2   . . . TM   Tc. For every temperature value, there will be a pressure,
P�
j , that will split up the isotherm in two halves of equal dimensions. The value

of P�
j is calculated applying an optimization procedure that, through iteration,

identifies the P�
j that ensures the minimal difference between both areas. To that

end, it begins with an initial guess of P̃j and iterates until it converges. Once
that the right value of pressure has been determined, it is possible to compute
the roots, Rjk, for pk � 1, 2, 3q, as the intersect between the isotherm for Tj and
the horizontal line P � P�

j . This assemblage of vapour and liquid roots will
conform the binodal. Hence, the defining points of the binodal curve, B, can be
listed as:

B �
!
tpRj1, P

�
j quj , p1, 1q, tpR

M�1�j
3 , P�

M�1�jqu
)
j�1,...,M

(7)

On the other hand, the spinodal is conformed by the collection of points that
define the local minima, lj , the critical point, and local maxima, Ll. Note that
vectors appear in bold.

The above-mentioned local optima points can be obtained through various
techniques. One of them is solving the derivative dP {dV � 0 and examining
the second derivative’s sign, d2P {dV 2, at the obtained solutions. If negative, the
point corresponds to a maximum; otherwise, it is a minimum. Therefore, the
assemblage of the points conforming the spinodal curve, S, is defined by:

S � ttljuj , p1, 1q, tLjujuj�1,...,M (8)

2.3 Characteristic Curves: Data Fitting

With the two sets of data points established, the characteristic curves can be
reconstructed using standard numerical routines for data fitting. Taking into
account that the obtained data points are influenced by some disturbances such
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as irregular sampling or noise, approximation is preferable, frequently using least-
squares optimization. In such scenario, the function to be minimized is the error
functional Ξ, which is the squared sum of residuals. The residual for the i-th
data is given by the difference between observed data, µi, and the fitted data,
µ̂i:

Ξ �
χ̧

i�1

pµi � µ̂iq
2 (9)

Here χ is the total amount of data, and fitted data are procured by a certain
fitting model function ϕ. It is worthwhile to mention that the minimization is
carried out on the free variables of ϕ. Here ϕ is presumed to be a polynomial
of a determined degree. As previously discussed, this choice can be extended by
considering rational curves, as described in next section.

2.4 Data Fitting with Rational Bézier Curves

A free-form rational Bézier curve Φpτq of degree η is defined as [12]:

Φpτq �

η̧

j�0

ωjΛjφ
η
j pτq

η̧

j�0

ωjφ
η
j pτq

(10)

where Λj are vector coefficients called the poles, ωj are their scalar weights,
φηj pτq are the Bernstein polynomials of index j and degree η, given by:

φηj pτq �

�
η

j



τ j p1 � τqη�j

and τ is the curve parameter, defined on the finite interval r0, 1s. By agreement,
0! � 1. As mentioned earlier, vectors will be denoted in bold.

Considered a set of data t∆iui�1,...,χ in Rν (usually ν � 2 or ν � 3), the goal
is to achieve the rational Bézier curve Φpτq through a discrete approximation
of the data t∆iui. To that end, it is necessary to compute all parameters of
the approximating curve Φpτq, (i.e. weights ωj , poles Λj , and parameters τi
associated with data points ∆i, for i � 1, . . . , χ, j � 0, . . . , η), by minimizing
the least-squares error, Υ , defined as the sum of squares of the residuals:

Υ � minimize
tτiui
tΛjuj

tωjuj

�
������

χ̧

i�1

�
�����∆i �

η̧

j�0

ωjΛjφ
η
j pτiq

η̧

j�0

ωjφ
η
j pτiq

�
����

2
�
������ . (11)
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Now, taking:

ϕηj pτq �
ωjφ

η
j pτq

η̧

k�0

ωkφ
η
kpτq

(12)

Eq. (11) becomes:

Υ � minimize
tτiui
tΛjuj

tωjuj

�
� χ̧

i�1

�
∆i �

η̧

j�0

Λjϕ
η
j pτq

�2
�
� , (13)

which can be rewritten in matrix form as: Ω.Λ � Ξ, where: Ω � rΩi,js ��
�� χ̧

k�1

ϕηi pτkqϕ
η
j pτkq

�
i,j

�
�,Ξ � rΞjs �

�
�� χ̧

k�1

∆kϕ
η
j pτkq

�
j

�
�, Λ � pΛ0, . . . ,Ληq

T ,

for i, j � 0, . . . , η, and p.qT means transposition.
Generally, χ ¡¡ η, meaning that Ω.Λ � Ξ is an overdetermined system of

equations. If τi had assigned values, the problem could be solved by standard op-
timization procedures with coefficients tΛiui�0,...,η as unknowns. However, since
τi are treated as unknowns, the complexity of the problem escalates. In fact,
as the polynomial blending functions φηj pτq and the rational blending functions
ϕηj pτq, are nonlinear in τ , the least-squares minimization of the residuals turns
to be a continuous, nonlinear optimization problem. It can also involve a large
number of unknowns, since in reality the problem can present an extremely large
amount of data points. Since there may not be only one unique set of param-
eters leading to the solution, the problem is also multimodal. On the whole,
the complicated interplay among all the unknowns (data parameters, poles, and
weights) leads to a highly complex overdetermined, continuous, multivariate,
multimodal, nonlinear optimization problem. The aim of this work is to solve
this problem. Instead of assuming certain values for some free parameters, they
are all included in our computations. This problem cannot be solved by apply-
ing classical mathematical optimization techniques [4]. In this work we propose
the application of the bat algorithm, a high-power evolutionary computational
method, already successfully applied to other data-fitting optimization problems
in previous works [7–9]. In the next section this algorithm is further discussed.

3 The Bat Algorithm

The bat algorithm is a computational intelligence algorithm devised for contin-
uous optimization problems [19, 20]. It is inspired by some particular features
of the social and motion behavior of small bats (microbats). These microbats
use a particular kind of sonar called echolocation for different purposes, such as
prey detection, obstacle avoidance, or roosting crevices detection, among oth-
ers. Introduced in 2010, the bat algorithm has found remarkable applications
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for several problems [9, 15–17]. See also [21] for a detailed review of the bat
algorithm.

The bat algorithm is a population-based method in which the individuals
(bats) are randomly initialized and distributed over the search space and then,
they perform extensive exploration searching for the best location, a variable
related to the quality of the solution. When a bat i is moving, its dynamics at
iteration g is determined by its frequency fgi , location xgi , and velocity vgi . These
variables are governed by the following evolution equations:

fgi � fgmin � βpfgmax � fgminq (14)

vgi � vg�1
i � rxg�1

i � x�s fgi (15)

xgi � xg�1
i � vgi (16)

where β is a uniform random variable on r0, 1s, and x� is used to represent the
current global best location (solution), obtained by evaluating the fitness func-
tion at all bats and then ranking the corresponding fitness values. The method
then performs a local search in the neighborhood of the current best solution
through a random walk of the form:

xnew � xold � εAg

with ε being a uniform random number on r�1, 1s and where Ag �  Agi ¡,
represents the average loudness of all the bats of the population at generation
g. Any new solution that is better than the previous best solution is accepted
with a certain probability that depends on the value of the loudness. In case of
acceptance, the pulse rate is increased according to the law:

rg�1
i � r0i r1 � expp�γgqs

where γ is a parameter of the method.
Simultaneously, the loudness is decreased, following an evolution rule:

Ag�1
i � αAgi

with α being another parameter of the method. This procedure is repeated iter-
atively for a maximum number of iterations, given by a parameter Gmax.

It is generally assumed that each bat has different values for the loudness
and the pulse emission rate. This is achieved by considering the initial values for
the loudness randomly as A0

i P p0, 2q. The emission rate takes an initial random
value r0i in the interval r0, 1s. Both parameters are updated only when the new
solutions are better than the current ones, which is interpreted as a sign that
the bats are advancing towards the optimal global solution.

4 The Method

4.1 Overview of the Method

As explained above, the Van der Waals Equation of State in (2) introduces
two parameters, a and b, characteristic of each chemical element. These two

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50426-7_45

https://dx.doi.org/10.1007/978-3-030-50426-7_45
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parameters, together with a set of temperatures T1   T2   . . . TM below the
critical temperature of the substance, Tc, are the starting input of the problem.
Our method is comprised of the subsequent steps:

1. Compute Vc, Pc, Tc, the critical values, using (4).
2. Compute the reduced variables Vc, Pc, Tc with (5).
3. Compute isotherms at temperatures Tj from (2).
4. For every isotherm of Tj :

4a. Contemplate a first guess P̃j and obtain the value of P�
j through opti-

mization, applying Maxwell’s construction.
4b. With P�

j , compute the roots of (6), as recounted in Sect. 2.2.
4c. Obtain the local optima of (6), as described in Sect. 2.2.
The result of (4a.) and (4b.) will be the sets of data points, B and S, for the
binodal and the spinodal curves, found respectively in (7) and (8).

5. Apply rational Bézier curves for data fitting on B and S as indicated:
5a. Obtain data parameterization for B and S and weight computation using

the bat algorithm (further discussed in Sect. 4.2).
5b. Compute the poles of the curve applying least-squares optimization. Re-

solve the equations system applying classical numerical procedures, such
as singular value decomposition (SVD), standard LU decomposition, and
a modification of the LU decomposition for non-squared sparse problems
(see [13] for details).

The most important and crucial part of the method, as well as the key com-
ponent of this paper is the step (5a), which will be discussed in the next section.

4.2 Bat Algorithm for Data Fitting

This section describes how the bat algorithm, presented in Sect. 3, is used for
data parameterization and weight computation with rational Bézier curves. To
this purpose, we need to consider:
1. Bat encoding. In our problem, the free variables are going to be represented
as follows. Bats, being denoted by Bk, are vectors of real numbers of length
M � η� 1, corresponding to a parameterization of data points and the weights,
as follows:

Bk � pρk1 , ρ
k
2 , . . . , ρ

k
M , ω

k
0 , ω

k
1 , . . . , ω

k
ηq (17)

All bats tBkuk are initialized with uniformly distributed random numbers on the
interval r0, 1s for the ρkj and with real positive values on the interval p0, 20s for
the ωkj . The tρki ui are arranged in ascending order to reproduce the orderly form
of data parameterizaton.
2. Fitness function. It dovetails with the estimation of the least-squares function
(11). However, as this function ignores the total number of data points, the
RMSE (root-mean squared error) is also computed:
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Table 1. Parameters of the bat algorithm and the values used in this work.

Notation Explanation Range Selected Value

P Size of the population 50-300 100

Gmax Max. no. of iterations 200–3,000 1,000

A0 Initial loudness p0, 2q 0.5

Amin Minimum loudness r0, 1s 0

r0 Initial pulse rate r0, 1s 0.2

fmax Max. frequency r0, 10s 1.5

α Multiplicative factor p0, 1q 0.3

γ Exponential factor r0, 1s 0.2

RMSE �

d
Υ

χ
(18)

3. Curve parameters. There is solely one parameter, which is the degree of the
curve, η. This value will influence the amount of weighs and poles. In this work
we empirically determined the optimal value, by computing and comparing the
RMSE for different values of η, from 2 to 7.
4. Bat algorithm parameters. The algorithm has some key parameters that need
to be tuned. This is of paramount importance for the proper functioning of the
method. The task entails a challenge, because these parameters depend heavily
on the problem. In this work the authors chose the best value by comparison
from a vast set of empirical results, obtained after performing a large amount
of simulations. The adjusted parameters are displayed in rows in Table 1, with
their notation, explanation, and range arranged in columns, along with the final
selected value. The parameters that are most decisive are the population size,
P, and the maximum number of iterations, Gmax. The size of population is set
to P � 100 in all shown cases. More extensive populations were also tested,
up to 300, without any significant effect. As for the number of iterations, the
bat algorithm results particularly beneficial since a number of Gmax � 1000 is
sufficient to reach convergence, as opposed to other algorithms that typically
requires a much larger number.

With the above-mentioned parameters selected, the bat algorithm is run for
the fixed number of iterations. Last, the simulation with the top fitness value
for (18) is chosen as the problem’s best solution.

5 Experiments and Results

5.1 Application to a Real Case: Argon

We have applied our method to the Van der Waals (VdW) Equation of State for
the case of argon, Ar. This noble gas is the third most abundant of its kind in
the atmosphere, and has countless applications in industrial processes, research,
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Table 2. Computational results for the binodal curve.

Polynomial approach Rational approach
Degree RMSE (best) RMSE (mean) RMSE (best) RMSE (mean)

η � 2 3.5349E�2 5.6509E�2 3.3873E�2 5.4522E�2

η � 3 7.7394E�5 9.8801E�5 6.5902E�5 7.7883E�5

η � 4 8.5572E�5 1.0833E�4 5.9717E�5 7.4588E�5

η � 5 1.0365E�4 1.1776E�4 8.4615E�5 1.0513E�4

η � 6 1.1927E�4 1.3328E�4 9.0631E�5 1.0264E�4

η � 7 1.1624E�4 1.2684E�4 9.0724E�5 1.0016E�4

medicine or lighting [18]. Its VdW parameters are a � 1.355 atm.L2.mol�2 and
b � 0.03201 L.mol�1. The value of the critical temperature is Tc � 150.86 K,
with a margin of 0.1 K as reported by [3, 6].

First to third steps from our workflow were performed for the following set of
temperatures: {130, 133, 135, 137, 140, 142, 145, 147, 148, 149, Tc} K and{128,
130, 133, 135, 137, 140, 142, 145, 147, 148, 149, 150.2, Tc} K, respectively for the
binodal and spinodal. Subsequently, the lists of data points for the characteristic
curves, B and S, were obtained following the fourth step. In the step 4a, the Van-
dermonde matrix is used for carrying out the standard polynomial linear fitting
of the optimization process. Data parameterization and weight computation are
completed following the procedure in Section 4.2. The result is a linear system
that can be solved using SVD. By doing so, pole computation is accomplished.

5.2 Computational Results

To account for stochastic effects and prevent premature convergence, 30 indi-
vidual simulations were run for every value of η. The worst 10 executions were
dropped to avoid the specious effects of instability. Computational results are
reported in tables 2 and 3 for binodal and spinodal curves respectively, with the
degree ranging from η � 2 to η � 7 (in rows). We remark that, although our
previous experiments for polynomial curves included values up to η � 9, the
values η ¡ 7 are actually unnecessary because of the extra degrees of freedom
given by the weights. They also introduce large numerical errors, so values for
η larger than 7 are finally discarded in our discussion. We have also compared
our current results for the rational curves with the previous ones with strictly
polynomial curves. The comparative results are displayed in Tables 2 and 3.
Each table presents, in columns, the curve degree, the best RMSE (for the 30
executions), and the RMSE mean (for the 20 best executions) for the polynomial
Bézier curves (columns 2 and 3) and for the rational Bézier curves (columns 4
and 5).

It can be seen from the good values of the fitting errors that the method
performs pretty good. The RMSE, best and mean, achieve values of order as low
as 10�4 for all degrees, except η � 2, meaning that the fail to be replicated with
a quadratic curve, owing to the fact of not being parabolas. The best fitting
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Table 3. Computational results for the spinodal curve.

Polynomial approach Rational approach
Degree RMSE (best) RMSE (mean) RMSE (best) RMSE (mean)

η � 2 4.9074E�2 7.1226E�2 4.3812E�2 6.2144E�2

η � 3 9.8649E�5 1.0356E�4 6.3187E�5 8.4551E�5

η � 4 1.1267E�4 1.2842E�4 7.3063E�5 8.5114E�5

η � 5 1.2060E�4 1.2953E�4 9.9672E�5 1.0724E�4

η � 6 1.4971E�4 1.8611E�4 1.1163E�4 1.3974E�4

η � 7 1.4750E�4 1.6975E�4 1.1708E�4 1.4828E�4

rational curves are obtained for η � 4 for the binodal curve (although η � 3
performs almost equivalently) and for η � 3 for the spinodal curve (although
the errors for η � 4 are also very similar). The RMSE degrees from η � 4 to
η � 9, tend to be of the same order. This fact indicates that functions of higher
degree are associated with more degrees of freedom (DOFs) and consequently,
they achieve better fitting. Naturally, this occurs at the price of a higher model
complexity, so in the case of numerical errors of a similar order, the values
providing the simplest model are more desirable and should be selected with
higher priority. In fact, an additional problem is that these extra degrees of
freedom may cause over-fitting. Actually, this holds true for the spinodal and
binodal respectively, for models of degree η ¥ 6 and η ¥ 7. Hence, the curves
that must be considered predictive for other temperature values, are only those
of low degree.

Another important observation is the excellent CPU times of around only
2�4 minutes. On the other hand, simulations in alternative swarm intelligence
methods can take as long as tens of minutes for a single execution. This advan-
tage is owed to the quick convergence of this method. Such competitive computa-
tional times are a good indicator of the applicability of our method. We remark,
however, that the CPU times for the rational case are still slightly larger (but
not dramatically) than for the polynomial case, which is consistent with the
fact that some extra free parameters have to be computed, thus requiring extra
computation time in our simulations.

Regarding the implementation, the equipment used for all the computations
was a 3.4 GHz. Intel Core i7 processor with 8 GB. of RAM. The authors imple-
mented all the source code in MATLAB, version 2018b.

6 Conclusions and Future Work

In this manuscript, a new method to construct the characteristic curves of the
Van der Waals equation of state through data fitting is presented. The method
relies on the use of rational Bézier curves. Considering the parameters a and b
of a chemical system as the input for our method, two sets of data points for the
binodal and spinodal curves are firstly obtained; then, they are used to perform
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data parameterization and weight computation by means of the bat algorithm;
finally, we apply least-squares optimization with singular value decomposition to
compute the poles of the curves. The method is applied to a chemical element,
argon. The method performs very well, and reconstructs the curves with high
accuracy. Furthermore, it is reasonably fast (although slower than the polynomial
case), with CPU times in the range of 2–4 minutes for each execution.

About the plans for future work, we wish to further improve the accuracy
of our method. We also want to reduce the computational time of the method.
We are also planning to apply this approach to other chemical components and
mixtures, as well as extending this approach to other popular equations of state
of interest in the field.
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