Comparative Analysis of Time Series Databases
in the Context of Edge Computing for Low
Power Sensor Networks

Piotr Grzesik! and Dariusz Mrozek!

Department of Applied Informatics, Silesian University of Technology
ul. Akademicka 16, 44-100 Gliwice, Poland
dariusz.mrozek@polsl.pl

Abstract. Selection of an appropriate database system for edge IoT de-
vices is one of the essential elements that determine efficient edge-based
data analysis in low power wireless sensor networks. This paper presents
a comparative analysis of time series databases in the context of edge
computing for IoT and Smart Systems. The research focuses on the per-
formance comparison between three time-series databases: TimescaleDB,
InfluxDB, Riak TS, as well as two relational databases, PostgreSQL and
SQLite. All selected solutions were tested while being deployed on a
single-board computer, Raspberry Pi. For each of them, the database
schema was designed, based on a data model representing sensor readings
and their corresponding timestamps. For performance testing, we devel-
oped a small application that was able to simulate insertion and querying
operations. The results of the experiments showed that for presented sce-
narios of reading data, PostgreSQL and InfluxDB emerged as the most
performing solutions. For tested insertion scenarios, PostgreSQL turned
out to be the fastest. Carried out experiments also proved that low-cost,
single-board computers such as Raspberry Pi can be used as small-scale
data aggregation nodes on edge device in low power wireless sensor net-
works, that often serve as a base for IoT-based smart systems.

Keywords: time series, PostgreSQL, TimescaleDB, InfluxDB, edge com-
puting, edge analytics, Raspberry Pi, Riak TS, SQLite

1 Introduction

In the recent years we have been observing IoT systems being applied for multiple
use cases such as water monitoring[20], air quality monitoring [24], and health
monitoring [25], generating a massive amount of data that is being sent to the
cloud for storing and further processing. This is becoming a more significant
challenge due to the need for sending the data over the Internet. Due to that, a
new computing paradigm called edge computing started to emerge [28]. The main
idea behind edge computing is to move data processing from the cloud to the
devices that are closer to the source of data in order to reduce the volume of data
that needs to be send to the cloud, improve reaction time to the changing state of

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI: |10. 1007/978—3—030—50426—7_28|

https://dx.doi.org/10.1007/978-3-030-50426-7_28

2 P. Grzesik et al.

the system, provide resilience and prevent data loss in situations where Internet
connection is not reliable or even not available most of the time. To achieve that,
edge computing devices need to be able to ingest data from sensors, analyze
them, aggregate metrics, and send them to the cloud for further processing if
required. For example, while collecting and processing environmental data on air
quality, the edge device can be responsible for aggregating data and computing
Air Quality Index (AQI) [22], instead of sending raw sensor readings to the
environmental monitoring center. In systems with multiple sensors generating
data at a fast rate, efficient storage and analytical system running on edge device
becomes a crucial part. Due to the time-series nature of sensor data, dedicated
time series databases seem like a natural fit for this type of workload. This
paper aims to evaluate several time series databases in the context of using
them in edge computing, low-cost, constrained device in form of Raspberry Pi
that is processing data from environmental sensors. The paper is organized as
follows. In section 2, we review the related works. In section 3, we describe
databases selected for comparison. Section 4 describes testing environment, used
data model as well as testing methodology. Section 5 contains a description of
the performance experiments that we carried out. Finally, section 6 concludes
the results of the paper.

2 Related Works

In the literature, there is a few research concerning the comparison of various
time-series databases. In the paper [27], Tulasi Priyanka Sanaboyina compared
two time-series databases, InfluxDB and OpenTSDB, based on the energy con-
sumption of the physical servers on which the databases are running under sev-
eral reading and writing scenarios. The author concludes the research with claims
that InfluxDB consumes less energy than OpenTSDB in comparable situations.

Bader et al. [I7] focused on open source time-series databases, examined 83
different solutions during their research, and focused on the comparison of twelve
selected databases, including InfluxDB, PostgreSQL and OpenTSDB among oth-
ers. All selected solutions were compared based on their scalability, supported
functions, granularity, available interfaces, and extensions as well as licensing
and support.

In his research [2I], Goldschmidt et al. benchmarked three open-source time-
series databases, OpenTSDB, KariosDB and Databus in the cloud environment
with up to 36 nodes in the context of industrial workloads. The main objective
of the research was to evaluate selected databases to determine their scalability
and reliability features. Out of the three technologies, KairosDB emerged as the
one that meets the initial hypotheses about scalability and reliability.

Wlodarczyk, in his article [29], provides an overview and comparison of four
offerings, Chukwa, OpenTSDB, TempoDB, and Squwk. The analysis focused
on feature differences between selected technologies, without any performance
benchmarks. The author identified OpenTSDB as a most popular choice for the
time series storage.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI: |10. 1007/978—3—030—50426—7_28|

https://dx.doi.org/10.1007/978-3-030-50426-7_28

Comparative Analysis of Time Series Databases 3

Pungild et al. [26] compared the databases to use them in the system that
stores large volumes of sensor data from smart meters. During the research, they
compared three relational databases, SQLite3, MySQL, PostgreSQL, one time-
series database, IBM Informix with DataBlade module, as well as three NoSQL
databases, MonetDB, Hypertable and Oracle BerkeleyDB. During the experi-
ments, it was determined that Hypertable offers the most significant number of
insert operations per second, but is slower when it comes to scanning opera-
tions. The authors suggested that BerkeleyDB offers a compromise when there
is a need for a workload that has a balanced number of both insert and scan
operations.

Fadhel et al. presented research [20] concerning the evaluation of the databases
for a low-cost water quality sensing system. Authors identified InfluxDB as the
most suitable solution, listing the ease of installation and maintenance, support
for multiple interface formats, and HTTP GUI as the deciding factors. In the
second part of the research, they conducted performance experiments and de-
termined that InfluxDB can handle the load from 450 sensors.

In his article [23], Kiefer provided a performance comparison between Post-
greSQL and TimescaleDB for storage and analytics of large scale, time-series
data. The author presented that at the scale of millions of rows, TimescaleDB
offers up to 20x higher ingest rates than PostgreSQL, at the same time offering
time-based queries to be even 14,000x faster. The author also mentions that for
simple queries, e.g., indexed lookups, TimescaleDB will be slower than Post-
greSQL due to more considerable planning time.

Boule, in his work [I9], described a performance comparison for insert and
read operations between InfluxDB and TimescaleDB. It is based on a simulated
dataset of metrics for a fleet of trucks. According to results obtained during the
experiments, TimescaleDB offers a better read performance than InfluxDB in
tested scenarios.

Based on the above, it can be concluded that most of the current research
focuses on on the use of time-series databases for large-scale systems, running
in cloud environments. One exception to that is the research [20], where au-
thors evaluate several databases in the context of a low-cost system; however,
presenting performance tests only for one of them, InfluxDB. In contrast to the
mentioned works, this paper focuses on the comparison of the performance of
several database systems for storing sensor data at the edge devices that have
limited storage and compute capabilities.

3 Time-Series Databases

Time series database (TSDB) is a database type designed and optimized to
handle timestamped or time-series data, which is characterized by a low num-
ber of relationships between data and temporal ordering of records. Most of
the time series workloads consist of a high number of insert operations, often
in batches. Query patterns include some forms of aggregation over time. It is
also important to note that in such workloads, data usually does not require

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI: |10. 1007/978—3—030—50426—7_28|

https://dx.doi.org/10.1007/978-3-030-50426-7_28

4 P. Grzesik et al.

updating after being inserted. To accommodate these requirements, time-series
databases store data in the form of events, metrics, or measurements, typically
numerical, together with their corresponding timestamps and additional labels
or tags. Data is very often chunked, based on timestamp, which in turn allows
for fast and efficient time-based queries and aggregations. Most TSDBs offer
advanced data processing capabilities such as window functions, automatic ag-
gregation functions, time bucketing, and advanced data retention policies. There
are currently a few approaches to building a time-series database. Some of them,
like OpenTSDB or TimescaleDB, depend on already existing databases, such as
HBase or PostgreSQL, respectively, while others are standalone, independent
systems such as InfluxDB. In recent years, according to DB Engine ranking, as
seen in Fig[l] the growth rate of the popularity of time series databases is the
highest out of all classified database types. For the experiments, databases were
selected based on their popularity, offered aggregation functionalities, support
for ARM architecture, SQL or SQL-like query language support as well as on
their availability without commercial license.

Trend of the last 24 months

200

— Time Series DBMS
Graph DBMS
Object oriented DBMS
— Multivalue DBMS
— Document stores
ﬁ — Key-value stores
RDF stores
— Native XML DBMS
— Search engines
— Wide column stores
— Relational DBMS

Apr 2018 Jul 2018 Oct 2018 Jan 2019 Apr 2019 Jul 2019 Qct 2019 Jan 2020
2020, DB-Engines.com

Fig. 1: Growth trend of various types of databases in the last 24 months according
to DB-Engines.com|[2]

3.1 TimescaleDB

TimescaleDB is an open-source, time-series database, written in C program-
ming language and is distributed as an extension of the relational database,
PostgreSQL. It is developed by Timescale Inc., which also offers enterprise sup-
port and cloud hosting in the form of Timescale Cloud offering. TimescaleDB
is optimized for fast ingest and complex queries [I4]. Thanks to the support

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI: |10. 1007/978—3—030—50426—7_28|

https://dx.doi.org/10.1007/978-3-030-50426-7_28

Comparative Analysis of Time Series Databases 5

for all SQL operations available in PostgreSQL, it can be used as a drop-in re-
placement of a traditional relational database, while also offering significant per-
formance improvements for storing and processing time-series data. By taking
advantage of automatic space-time partitioning, it enables horizontal scaling,
which in turn can further improve the ingestion capabilities of the system. It
stores data in structures called hypertables, which serve as an abstraction for a
single, continuous table. Internally, TimescaleDB splits hypertables into chunks
that correspond to a specific time interval and partition keys. Chunks are imple-
mented by using regular PostgreSQL tables [16]. Thanks to being an extension
of PostgreSQL DBMS, it supports the same client libraries that support Post-
greSQL. According to the DB Engines ranking [I5], it is the 8th most popular
time-series database.

3.2 InfluxDB

InfluxDB is an open-source, time-series database, written in Go programming
language, developed and maintained by InfluxDB Inc., which also offers enter-
prise support and a cloud-hosted version of the database. Internally, it uses a
custom-build storage engine called Time-Structured Merge (TSM) Tree, which
is optimized for time series data. It has no external dependencies, is distributed
as a single binary, which in turn allows for easy deployment process on all ma-
jor operating systems and platforms. InfluxDB supports InfluxQL, which is a
custom, SQL-like query language with support for aggregation functions over
time series data. It supports advanced data retention policies as well as con-
tinuous queries, which allow for automatic computations of aggregate data to
speed up frequently used queries [5]. It uses shards to partition data and orga-
nizes them into shards groups, based on the retention policy and timestamps.
InfluxDB is also a part of TICK stack [4], which is a data processing platform
that consists of a time-series database in form of InfluxDB, Kapacitor, which is
a real-time streaming data processing engine, Telegraf, the data collection agent
and Chronograf, a graphical user interface to the platform. Client libraries in the
programming languages like Go, Python, Java, Ruby, and others are available,
as well as command-line client ”influx”. According to DB Engines ranking [3],
it is the most popular time-series database management system.

3.3 Riak TS

Riak TS is an open-source, distributed NoSQL database, optimized for the time
series data and built on top of Riak KV database [9], created and maintained
by Basho Technologies. Riak TS is written in Erlang programming language,
supports masterless, multi-node architecture to ensure resiliency to network and
hardware failures. This type of architecture also allows for efficient scalability
with near-linear performance increase[I0]. It supports a SQL-like query language
with aggregation operations over time series data. It offers both HT'TP and PBC
APIs as well as dedicated client libraries in Java, Python, Ruby, Erlang, and
Node.js. Besides, it has a native Apache Spark [I] connector for the in-memory

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI: |10. 1007/978—3—030—50426—7_28|

https://dx.doi.org/10.1007/978-3-030-50426-7_28

6 P. Grzesik et al.

analytics. According to DB Engines ranking [I1], it is the 15th most popular
time-series database.

3.4 PostgreSQL

PostgreSQL is an open-source relational database management system written
in C language and currently maintained by PostgreSQL Global Development
Group. PostgreSQL runs on all major operating systems, is ACID [30] compli-
ant and supports various extensions, namely TimescaleDB. It supports a major
part of the SQL standard and offers many features, including but not limited
to, triggers, views, transactions, streaming replication. It uses multi-version con-
currency control, MVCC [I8]. In addition to being a relational database, it also
offers support for storing and querying document data thanks to JSON, JSONB,
XML, and Key-value data types [6]. There are client libraries available in pro-
gramming languages like Python, C, C++, Java, Go, Erlang, Rust, and others.
According to DB Engines ranking [7], it is the 4th most popular database overall.
It does not offer any dedicated support and optimizations for time-series data.

3.5 SQLite

SQLite is an open-source relational database, written in C language. The SQLite
source code is currently available in the public domain. It is a lightweight, single
file, and unlike most databases, it is implemented only as a library and does not
require a separate server process. SQLite provides all functionalities directly by
the function calls. Its simplicity makes it one of the most widely used databases,
especially popular in embedded systems. SQLite has a full-featured SQL stan-
dard implementation with support for functionalities such as triggers, views,
indexes, and many more [I2]. Similar to PostgreSQL, it does not offer any spe-
cific support for time series data. Besides, it does not provide a data type for
storing time, and it requires users to save it as numerical timestamps or strings.
According to DB Engines ranking [13], it is the 7th most popular relational
database and 10th most popular database overall.

4 Testing Environment and Data Model

The testing environment was based on a 6LoWPAN sensor network that is a
part of the environment monitoring system, which consists of a group of the
edge router device that additionally serves as a database and analytical engine.
It is also responsible for sending aggregated metrics to the analytic system in
the cloud for further processing. Another part of the network is composed of
ten sensor nodes that are sending measurements such as air quality and weather
condition metrics to the edge router device. Fig. [2| presents the network diagram
of the described system.

In this research, we focused on performance evaluation of the edge database
functionality of the presented system. To simplify the testing environment and

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI: |10. 1007/978—3—030—50426—7_28|

https://dx.doi.org/10.1007/978-3-030-50426-7_28

Comparative Analysis of Time Series Databases 7

o

4

Edge Router

Database

Edge Computing Device

Sensor network

Fig. 2: Network diagram of the edge computing system.

allow for running tests multiple times in a reasonable amount of time, we devel-
oped a small Python application to serve as a generator of sensor readings instead
of using data generated by the physical network. As an edge device we decided
to use a Raspberry Pi single-board computer, with the following specification

[8]:

CPU - Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC
@ 1.5GHz

Memory - 4GB LPDDR4-3200 SDRAM

— Storage - SDHC card (16 GB, class 10)

OS - Raspbian GNU/Linux 10 (buster) with kernel version 4.19.50-v714+

Table 1: Data model used for the performance experiments

Value Type
Temperature Float
Pressure Float
Humidity Float
PM2.5 Float
PM10 Float
NOs Float
Sensor ID String
Location String
Time Timestamp (Integer)

4.1 Data model

Each data point sent by the sensor consists of air quality metrics in the form of
NOs and dust particle size metrics — PM2.5 and PM10. Besides, it also carries
information about weather conditions such as ambient temperature, pressure,

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI: |10. 1007/978—3—030—50426—7_28|

https://dx.doi.org/10.1007/978-3-030-50426-7_28

8 P. Grzesik et al.

and humidity. Each reading is timestamped and tagged with the location of the
sensor and the unique sensor identifier. Table [I] shows the structure of a single
data point with corresponding data types. For the experiments, we generated
data from 10 simulated sensors, where each sensor sends reading every 15 seconds
over 24 hours. It resulted in 28,800 data points used for performance testing.

4.2 Testing methodology

For testing, a small Python application was developed separately for each of
the selected databases. The application was responsible for reading simulated
time-series data, inserting that data into the database and reading the data
back from the database, while measuring the time it took to execute all of the
described operations. Table [2] presents the list of the databases along with their
corresponding client libraries. It also shows versions of the software used during
the experiments.

Table 2: Database and client library versions

Database |Database version|Client library|Client library version
TimescaleDB 1.5.1 psycopg?2 2.8.4
InfluxDB 1.7.9 influxdb 5.2.3
Riak TS 1.5.2 riak 2.7.0
PostgreSQL 11.5 psycopg2 2.8.4
SQLite 3.27.2 sqlite3 2.6.0

5 Performance Experiments

To evaluate the insertion and querying performance, we conducted several ex-
periments. Firstly, we ran the test to assess the writing capabilities of all selected
databases by simulating the insertion of data points in two ways: one-by-one and
in batches of 10 points. The reason for that was to accommodate the fact that
databases can offer better performance for batch insertions, and it is possible to
buffer data before saving it to the database. In this step, for each database, we
ran the simulation 50 times (except for SQLite where simulations were run 20
times due to relatively long simulation time). Secondly, we ran the experiments
to evaluate the query performance of all selected solutions in three scenarios. In
the first scenario, we evaluated a query for average temperature in the chosen
period, grouped by location. In the second query, we tested a query for mini-
mum and maximum values of NOg, PM2.5, and PM10 in the selected period,
once again grouped by location. In the last, third scenario, we evaluated the
performance of a query that counts data points grouped by sensor ID in the
selected period for which NOy was larger than selected value and location was
equal to a specific one. Each query was executed 5000 times. The query scenarios

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI: |10. 1007/978—3—030—50426—7_28|

https://dx.doi.org/10.1007/978-3-030-50426-7_28

Comparative Analysis of Time Series Databases 9

were selected in order to test the performance of the databases for most common
aggregation queries that can be used in scenarios where the analysis has to be
performed directly on the edge device or when the data needs to be aggregated
before sending to the cloud in order to reduce the volume of transferred data.

5.1 Insertion

In the first simulation, we evaluated the insertion performance in two different
scenarios. Fig. 3| presents the obtained results in the form of the average number
of data points inserted per second in both scenarios. For one-by-one insertion,
we observe PostgreSQL and TimescaleDB as the best performing solutions, with
260 and 230 points inserted per second, respectively. Next is Riak TS with 191
points, followed by InfluxDB with 54 points per second. On the other side of
the spectrum is SQLite, with only 8 points per second inserted on average. In
the second scenario, with batch insertions of 10-point batches, we observed a
general trend of higher ingestion rates for all databases in comparison to single
point writes with InfluxDB being 8.65 times faster, both PostgreSQL and SQLite
improving 6.74 times, TimescaleDB improving 5.15 times and Riak TS noting the
smallest relative increase by 2.45 times. We observed similar results as for one-by-
one insertion, with PostgreSQL being the most performant database in the tested
scenario with 1,756 data points ingested per second, followed by TimescaleDB
with 1,187 points, InfluxDB with 474 points and Riak TS with 468 points. Once
again, SQLite recorded the worst performance, with only 55 points ingested per
second.

1750 + == Single

Batch (n=10]
1500
1250 A
1000 4

750 4

500 4

Num of datapoints per second

250

H E i

TimescaleDB InfluxDB Riak-TS PastgreSOL ECHJIEE‘B

Fig. 3: Number of data points ingested per second for each tested database.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI: |10. 1007/978—3—030—50426—7_28|

https://dx.doi.org/10.1007/978-3-030-50426-7_28

10 P. Grzesik et al.

5.2 Querying

In the following experiments, we tested the reading performance for three dif-
ferent queries. Results are presented in the form of the average query execution
time in milliseconds for each database. Due to the fact that execution for Riak
TS was in all cases 20-40 times slower than for all other solutions, the results for
Riak TS were removed from the further comparison to improve the readability
of the presented charts. Fig. |4 shows both the query used in the first scenario
as well as the obtained results. In this scenario, InfluxDB emerged as the fastest
solution with average query execution time of 24 milliseconds, followed by Post-
greSQL and TimescaleDB with 41 and 52 milliseconds, respectively. SQLite was
the slowest, recording average query execution time of 66 milliseconds.

SELECT @
location,
AVG("temperature")
from
"conditions"
WHERE
time == '2019-12-20T03:00:00Z"
AND time == '2019-12-20T15:00:002'
GROUP BY
"location"

Execution time [ms]

DU O~ WK

]

TimescaleDB InfluxDB PostgraSQL SQLite3

(a) Tested aggregation query (b) Average query execution time

Fig. 4: Query and test results for the first querying scenario.

Next, a comparison was made for the results obtained during the evalua-
tion of second query computing minimum and maximum aggregations of air
quality metrics. The recorded results and queries are shown in Fig. [f] In this
example, PostgreSQL turned out to be the fastest solution with average query
execution time of 48 milliseconds, next was InfluxDB with 70 milliseconds and
TimescaleDB with 72 milliseconds. Tested query took the longest time to ex-
ecute on SQLite, taking on average 81 milliseconds. We can observe a general
trend of increased query execution time with more aggregations performed in
comparison to the first testing scenario.

The last experiment was performed for the third tested query, evaluating
the number of times the NOy was higher than the predefined threshold. Fig. [0]
presents the query used and the results obtained during that simulation. Once

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI: |10. 1007/978—3—030—50426—7_28|

https://dx.doi.org/10.1007/978-3-030-50426-7_28

Comparative Analysis of Time Series Databases 11

1 SELECT
2 location,
3 MIN("pm_2 5"),]
4 MAX("pm 2 5"), »
5 MIN("pm_10"), =
6 MAX("pm_10"), E”
7 MIN("no2"}, e
8 MAX{"noz") N
9 from g
10 "conditions" g *
11 WHERE 20
il time == '2019-12-208T03:00:00Z' 10
13 AND time == '2019-12-20T15:00:80Z'
14 GROUP BY TimescaleDB InfluxDB PastgresQL sLite3
15 "location”
(a) Tested aggregation query (b) Average query execution time

Fig.5: Query and test results for the second querying scenario.

again, PostgreSQL was the fastest solution with an average query execution
time of 15 milliseconds, followed by InfluxDB with 29 milliseconds. The two
slowest databases were TimescaleDB and SQLite, with 39 and 40 milliseconds
per execution on average.

5.3 Results Summary

Considering results for all presented simulations, we can observe that in almost
all cases, PostgreSQL is the best performing solution for the evaluated workloads,
except for InfluxDB, which turned out to be faster for the first aggregation query.
It was validated that batching data points for insertion causes performance gains,
as high as 8.65 times more data points ingested per second for InfluxDB. With
the exception of Riak TS, all databases executed tested queries on average in
less than 80 milliseconds, and the relative differences in performance for queries
are not as high as in the case of insertion.

6 Concluding Remarks

The selection of a proper storage system with declarative querying capabilities
is an essential element of building efficient systems with edge-based analytics.
This research aimed to compare the performance of several databases in the con-
text of edge computing in wireless sensor networks for IoT-based smart systems.
We believe that experiments and analysis of the results presented in the paper
complement the performance evaluation of InfluxDB presented in [20] by show-
casing performance results for multiple databases and can serve as a reference

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI: |10. 1007/978—3—030—50426—7_28

https://dx.doi.org/10.1007/978-3-030-50426-7_28

12 P. Grzesik et al.

SELECT
sensor_id,
Count("no2") *

from
"conditions"

WHERE
"no2" = 8
AND "location" = 'outdoor'

AND time == '2019-12-20T63:00:002" 10

18 AND time <= '2019-12-20T15:00:002"'

11 GROUP BY

12 "sensor_id"

WU B Wk

Execution time [ms]
5]

TimescaleDB InfluxDB PostgreSQL S0Lite3

(a) Tested aggregation query (b) Average query execution time

Fig. 6: Query and test results for the third querying scenario.

when selecting an appropriate database for low-cost, edge analytics applications.
As it turned out, for a smaller scale, it might make sense to choose a more tradi-
tional, relational database like PostgreSQL, which offers the best performance in
all but one tested case. However, when features such as data retention policies,
time bucketing, automatic aggregations are crucial for the developed solution,
dedicated time-series databases such as TimescaleDB and InfluxDB become a
better choice.

Acknowledgments

The research was supported by the Polish Ministry of Science and Higher Ed-
ucation as a part of the CyPhiS program at the Silesian University of Technol-
ogy, Gliwice, Poland (Contract No. POWR.03.02.00-00-1007/17-00), by Statu-
atory Research funds of the Silesian University of Technology, Gliwice, Poland
(Grant BKM-576/RAU2/2019 ZAD.1), and partially, by the professorship grant
(02/020/RGPL9 /0184) of the Rector of the Silesian University of Technology,
Gliwice, Poland.

References

1. Apache Spark (accessed on January 9th, 2020), https://spark.apache.org/

2. DBMS popularity broken down by database model (accessed on Februrary 2nd,
2020), https://db-engines.com/en/ranking_categories

3. InfluxDB on DB-engines ranking (accessed on Februrary 1st, 2020), https://
db-engines.com/en/system/InfluxDB

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI: |10. 1007/978—3—030—50426—7_28|

https://spark.apache.org/
https://db-engines.com/en/ranking_categories
https://db-engines.com/en/system/InfluxDB
https://db-engines.com/en/system/InfluxDB
https://dx.doi.org/10.1007/978-3-030-50426-7_28

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Comparative Analysis of Time Series Databases 13

InfluxDB overview (accessed on Februrary 2nd, 2020), https://www.influxdata.
com/products/influxdb-overview/

InfluxDB overview (accessed on January 9th, 2020), https://www.influxdata.
com/products/influxdb-overview/

PostgreSQL documentation (accessed on January 9th, 2020), https://www.
postgresql.org/about/

PostgreSQL on DB-engines ranking (accessed on Februrary 1st, 2020), https:
//db-engines.com/en/system/PostgreSQL

Raspberry Pi 4 datasheet (accessed on February 4th, 2020), https:
//www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/
rpi_DATA_2711_1pO_preliminary.pdf

Riak KV documentation (accessed on January 9th, 2020), https://riak.com/
products/riak-kv/index.html

Riak TS datasheet (accessed on January 9th, 2020), https://riak.com/content/
uploads/2016/05/Riak-Riak-TS-Datasheet.pdf

Riak TS on DB-engines ranking (accessed on Februrary 1st, 2020), https://
db-engines.com/en/system/Riak+TS

SQLite documentation (accessed on January 9th, 2020), https://www.sqlite.
org/about.html

SQLite on DB-engines ranking (accessed on Februrary 1st, 2020), https://
db-engines.com/en/system/SQLite

TimescaleDB documentation (accessed on January 9th, 2020), https://docs.
timescale.com/latest/introduction

TimescaleDB on DB-engines ranking (accessed on Februrary 1st, 2020), https:
//db-engines.com/en/system/TimescaleDB

TimescaleDB : SQL made scalable for time-series data (2017), https://pdfs.
semanticscholar.org/049a/af11fa98525b663da18f39d5dcc5d345eb9a. pdf
Bader, A., Kopp, O., Falkenthal, M.: Survey and comparison of open source time
series databases. In: Mitschang, B., Nicklas, D., Leymann, F., Schéning, H., Her-
schel, M., Teubner, J., Harder, T., Kopp, O., Wieland, M. (eds.) Datenbanksysteme
fiir Business, Technologie und Web (BTW 2017) - Workshopband. pp. 249-268.
Gesellschaft fiir Informatik e.V., Bonn (2017)

Bernstein, P.A., Goodman, N.: Concurrency control in distributed database sys-
tems. ACM Computing Surveys (CSUR) 13(2), 185-221 (1981)

Boule, B.: How to benchmark IoT time-series workloads in a production envi-
ronment (accessed on January 9th, 2020), https://blog.timescale.com/blog/

how-to-benchmark-iot-time-series-workloads-in-a-production-environment/

Fadhel, M., Sekerinski, E., Yao, S.: A Comparison of Time Series Databases for
Storing Water Quality Data, pp. 302-313 (04 2019)

Goldschmidt, T., Jansen, A., Koziolek, H., Doppelhamer, J., Breivold, H.P.: Scala-
bility and robustness of time-series databases for cloud-native monitoring of indus-
trial processes. In: 2014 IEEE 7th International Conference on Cloud Computing.
pp. 602-609 (June 2014)

Kanchan, K., Gorai, A., Goyal, P.: A review on air quality indexing system. Asian
Journal of Atmospheric Environment 9, 101-113 (06 2015)

Kiefer, R.: TimescaleDB vs. PostgreSQL for time-series: 20x higher inserts, 2000x
faster deletes, 1.2x-14,000x faster queries (accessed on January 9th, 2020), https:
//blog.timescale.com/blog/timescaledb-vs-6a696248104e/

Liu, X., Nielsen, P.: Air quality monitoring system and benchmarking. pp. 459-470
(08 2017)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI: |10. 1007/978—3—030—50426—7_28|

https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/influxdb-overview/
https://www.postgresql.org/about/
https://www.postgresql.org/about/
https://db-engines.com/en/system/PostgreSQL
https://db-engines.com/en/system/PostgreSQL
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/rpi_DATA_2711_1p0_preliminary.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/rpi_DATA_2711_1p0_preliminary.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/rpi_DATA_2711_1p0_preliminary.pdf
https://riak.com/products/riak-kv/index.html
https://riak.com/products/riak-kv/index.html
https://riak.com/content/uploads/2016/05/Riak-Riak-TS-Datasheet.pdf
https://riak.com/content/uploads/2016/05/Riak-Riak-TS-Datasheet.pdf
https://db-engines.com/en/system/Riak+TS
https://db-engines.com/en/system/Riak+TS
https://www.sqlite.org/about.html
https://www.sqlite.org/about.html
https://db-engines.com/en/system/SQLite
https://db-engines.com/en/system/SQLite
https://docs.timescale.com/latest/introduction
https://docs.timescale.com/latest/introduction
https://db-engines.com/en/system/TimescaleDB
https://db-engines.com/en/system/TimescaleDB
https://pdfs.semanticscholar.org/049a/af11fa98525b663da18f39d5dcc5d345eb9a.pdf
https://pdfs.semanticscholar.org/049a/af11fa98525b663da18f39d5dcc5d345eb9a.pdf
https://blog.timescale.com/blog/how-to-benchmark-iot-time-series-workloads-in-a-production-environment/
https://blog.timescale.com/blog/how-to-benchmark-iot-time-series-workloads-in-a-production-environment/
https://blog.timescale.com/blog/timescaledb-vs-6a696248104e/
https://blog.timescale.com/blog/timescaledb-vs-6a696248104e/
https://dx.doi.org/10.1007/978-3-030-50426-7_28

14

25.

26.

27.

28.

29.

30.

P. Grzesik et al.

Paul, A., Pinjari, H., Hong, W.H., Seo, H., Rho, S.: Fog computing-based IoT for
health monitoring system. Journal of Sensors 2018, 1-7 (10 2018)

Pungila, C., Fortig, T.F., Ovidiu, A.: Benchmarking database systems for the re-
quirements of sensor readings. IETE Technical Review 26, 342-349 (08 2009)
Sanaboyina, T.P.: Performance Evaluation of Time series Databases based on
Energy Consumption. Master’s thesis, , Department of Communication Systems
(2016)

Singh, S.: Optimize cloud computations using edge computing. In: 2017 Interna-
tional Conference on Big Data, IoT and Data Science (BID). pp. 49-53 (Dec 2017)
Wlodarczyk, T.W.: Overview of time series storage and processing in a cloud envi-
ronment. In: 4th IEEE International Conference on Cloud Computing Technology
and Science Proceedings. pp. 625-628 (Dec 2012)

Yu, S.: ACID properties in distributed databases. Advanced eBusiness Transactions
for B2B-Collaborations (2009)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI: |10. 1007/978—3—030—50426—7_28|

https://dx.doi.org/10.1007/978-3-030-50426-7_28

