
A block preconditioner for scalable large scale
finite element incompressible flow simulations?

Damian Goik and Krzysztof Banaś1[0000−0002−4045−1530]

AGH University of Science and Technology,
al. A. Mickiewicza 30, 30-059 Kraków, Poland

pobanas@cyf-kr.edu.pl

Abstract. We present a block preconditioner, based on the algebraic
multigrid method, for solving systems of linear equations, that arise in in-
compressible flow simulations performed by the stabilized finite element
method. We select a set of adjustable parameters for the preconditioner
and show how to tune the parameters in order to obtain fast convergence
of the standard GMRES solver in which the preconditioner is employed.
Additionally, we show some details of the parallel implementation of the
preconditioner and the achieved scalability of the solver in large scale
parallel incompressible flow simulations.

Keywords: finite element method · Navier-Stokes equations · solvers of
linear equations · block preconditioning · algebraic multigrid

1 Introduction

Stabilized finite elements are one of the popular techniques for solving Navier-
Stokes equations of incompressible flows [5]. We are interested in the strategy,
in which the finite element method is applied for space discretization, with some
form of implicit discretization in time, either for transient problems or for pseudo-
transient continuation employed to achieve steady-state [11]. The resulting non-
linear systems are usually solved either by some form of Newton iterations or
Picard, fixed-point, iterations [7] – we select the latter technique in our numerical
examples.

In each of the considered scenarios there is a sequence of systems of linear
equations to be solved. Due to the incompressibility condition, in the form of
the requirement for divergence free velocity field, the systems are ill conditioned
and the standard Krylov subspace methods with typical preconditioners (like
ILU(k) – incomplete factorization algorithms) become inefficient [16, 18].

We aim at developing a solver for large scale parallel incompressible flow
simulations. Therefore we renounce the direct solvers, due to their super-linear
complexity and poor parallel scalability [14, 12]. We try to find a scalable and
sufficiently strong preconditioner, in order to guarantee the convergence of the
standard restarted GMRES method [17].

? The work was realized as a part of fundamental research financed by the Ministry
of Science and Higher Education, grant no. 16.16.110.663

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_15

https://dx.doi.org/10.1007/978-3-030-50420-5_15

2 D. Goik et al.

We consider block preconditioners [15, 16] that split the linear systems into
two parts: the first related to velocity components, with time derivative terms
and better convergence properties, and the second related to the pressure, i.e.
the incompressibility condition.

For the latter part we use an algorithm based on the algebraic multigrid,
as the black-box version of the multigrid method [19], the only method that
properly takes into account the infinite speed of propagation of pressure changes
throughout the domain [7].

Several versions of algebraic multigrid (AMG) have been proposed for dealing
with the pressure related part of the system that arise in block preconditioners
for the Navier-Stokes equations [8]. The extensive studies in [6] showed the strong
deterioration of convergence properties of the solvers for the increasing Reynolds
and CFL numbers in the case of using smoothed aggregation multigrid. In the
recent article [20] classical AMG is compared with smooth aggregation AMG for
a large scale transient problem.

In the current paper we propose a block preconditioner based on the algo-
rithm outlined in [18], combined with the classical AMG algorithm by Stuben
[19]. We investigate the optimization options available for the standard AMG
and show how to obtain, based on the proper selection of techniques and param-
eters, good convergence properties together with the scalability for the whole
solver in large scale stationary incompressible flow simulations.

2 Problem statement

We solve the Navier-Stokes equations of incompressible fluid flow, formulated
for the unknown fluid velocity u(x, t) and pressure p(x, t) that satisfy:

ρ

(
∂u

∂t
+(u ·∇)u−ν∇2u

)
+ ∇p =f (1)

∇ · u = 0

together with boundary conditions:

u = û0 on ΓD

(ν∇u)n− pn = g on ΓN

where ν and ρ denote kinematic viscosity and density of fluid respectively, and
f is a source term that includes gravity forces (the system is considered in the
dimensional form). The vector fields û0 and g are given on two disjoint parts of
the boundary of the 3D computational domain Ω, ΓD for velocities and ΓN for
stresses, respectively.

We discretize the Navier-Stokes equations using the spaces of continuous,
piecewise linear polynomials. For velocity and pressure unknowns we consider
the spaces V hu and V hp (vector valued for velocities), with functions that satisfy

Dirichlet boundary conditions, while for test functions we apply the spaces V hw

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_15

https://dx.doi.org/10.1007/978-3-030-50420-5_15

A block preconditioner for incompressible flow simulations 3

and V hr , with zero values on the Dirichlet parts of the boundary. We use SUPG
stabilized finite element formulation [9] for space discretization that can be writ-
ten (in index notation with the summation convention for repeated indices):

Find approximate functions uh ∈ V hu and ph ∈ V hp such that the following
statement:∫

Ω

ρ
∂uhj
∂t

whj dΩ +

∫
Ω

ρuhj,lu
h
l w

h
j dΩ +

∫
Ω

ρνuhj,lw
h
j,ldΩ −

∫
Ω

phwhj,jdΩ

−
∫
Ω

uhj,jr
hdΩ +

∑
e

∫
Ωe

RNSj (uh, ph)τjlR
NS
l (wh, rh)dΩ

+
∑
e

∫
Ωe

uhj,lδw
h
j,ldΩ =

∫
Ω

fjw
h
j dΩ −

∫
ΓN

gjw
h
j dΓ

holds for every test function wh ∈ V hw and rh ∈ V hr .
Above, RNSj (uh, ph) and RNSl (wh, rh) denote residuals of the Navier-Stokes

equations computed for respective arguments, while τjl and δ are coefficients of
SUPG stabilization [9].

Since in the current paper we are mainly interested in stationary problems
and pseudo-transient continuation technique, we use the implicit Euler time
discretization, due to its stability. When applied to (2), it leads to a non-linear
problem for each time step. We use Picard’s (simple) iterations for solving non-
linear problems that finally lead to a series of linear problems.

The structure of each original linear system consists of 4x4 blocks for every
finite element node in the mesh (three velocity components and pressure). For
the purpose of applying block preconditioning the system is rearranged. In the
vector of unknowns, first, all velocity components at all nodes are placed (we
will denote that part of u by uv), followed by the pressure degrees of freedom
(denoted by up). With this approach the system of equations can be written as:(

Dvv Dvp

Dpv Dpp

)
·
(

uv

up

)
=

(
b̄w

bq

)
(2)

For classical mixed formulations without stabilization terms, the part Dvp

is just the transpose of Dpv, while the part Dpp vanishes. For the stabilized
formulation additional terms appear in Dvp, Dpv and Dpp, while Dvv keeps its
diagonally dominant form, due to the discretized time derivative term. The ma-
trix Dvv depends additionally on the solution at the previous Picard’s iteration,
while the right hand side b̄w depends on the solution at the previous time step.

We solve the system (2) using the restarted GMRES method with left precon-
ditioning [17]. At each GMRES iteration the two most time consuming steps are
the multiplication of the residual vector (for the whole system) by the system ma-
trix and then the application of the preconditioner. Formally, the preconditioner
is represented as a matrix, that tries to approximate the inverse of the system
matrix (the better the approximation, the faster the GMRES convergence) and
the action of the preconditioner is represented as matrix-vector multiplication. In

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_15

https://dx.doi.org/10.1007/978-3-030-50420-5_15

4 D. Goik et al.

practice, the preconditioner matrix is usually not formed, instead, an algorithm
is applied for the input vector, that is equivalent to a linear operator. For block
preconditioners, the algorithm becomes complex, with several matrices involved,
and iterative methods used for approximating inverses.

3 A multigrid based block preconditioner for linear
equations

Following the approach in SIMPLE methods for solving Navier-Stokes equations
[15], we observe that the inverse of the system matrix in Eq. 2 can be decomposed
into the following product:(

Dvv Dvp

Dpv Dpp

)−1
=(

I −D−1vv Dvp

0 I

)
×
(

D−1vv 0
0 S−1

)
×
(

I 0
−DpvD−1vv I

)
where S is the Schur complement for Dpp

S = Dpp −DpvD−1vv Dvp

The action of the inverse of the system matrix on a vector (with the parts
related to velocity components and pressure denoted by zv and zp respectively)
can be written as:(

Dvv Dvp

Dpv Dpp

)−1(
zv
zp

)
=

(
D−1vv (zv −Dvpz̄p)

z̄p

)
with

z̄p = S−1
(
zp −DpvD−1vv zv

)
The above formulae would correspond to the application of the perfect pre-

conditioner (being the exact inverse of the system matrix), that would guarantee
the convergence of GMRES in a single iteration [17]. However, the construction
of the presented exact form does not satisfy the requirement for the precondi-
tioner to be relatively cheap, hence, some appoximations have to be performed.

We consider the approximation based on the SIMPLEC (Semi-Implicit Pres-
sure Linked Equation Corrected) algorithm, where the action of the precondi-
tioner is split into three steps [8]:

1. solve approximately: Dvvz̃v = zv
2. solve approximately: S̃ẑp = zp −Dpvz̃v
3. substitute: ẑv = z̃v − D̃−1vvDvpẑp

where any vector with parts zv and zp is used as an input, and the output is

stored in ẑv and ẑp (with an intermediate vector z̃v). Above, S̃ is an approxima-
tion to the original Schur complement matrix S, that changes the original block

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_15

https://dx.doi.org/10.1007/978-3-030-50420-5_15

A block preconditioner for incompressible flow simulations 5

D−1vv to some approximation. The approximation to D−1vv is also used in step 3
of the algorithm (denoted their by D̃−1vv), although these two approximations to
D−1vv can be different.

The presented above three-step algorithm is used as the preconditioner in
our GMRES solver, with the input parts zv and zp provided by the product of
the system matrix and a suitable GMRES residual vector.

There are several factors influencing the quality of the preconditioner, and in
consequence the convergence and scalability of the solver. The first factor is the
quality of the approximation to D−1vv in Step 1 of the procedure. In our implemen-
tation we solve approximately the system, simply by employing some number
of Gauss-Seidel iterations to Dvv. The convergence is sufficient to decrease the
residual fast, partially due to the diagonal dominance of time derivative terms
in Dvv.

The second factor is the accuracy of obtaining ẑp in Step 2. It is influenced
by the solution procedure for the system of equations, as well as the choice of
the approximation to D−1vv in the approximate Schur complement matrix S̃.

Usually the approximation to D−1vv in S̃ uses the diagonal form, with the ma-
trix having inverted diagonal entries of Dvv as the simplest choice (the original
SIMPLE algorithm). In the SIMPLEC approach, adopted in our implementa-
tion, the diagonal matrix approximating D−1vv have at each diagonal position the
inverse of the sum of the absolute values of the entries in the corresponding row
of Dvv. We use the same approximation to D−1vv in Step 3 of the SIMPLEC
algorithm.

Given the approximation to S̃, the most important, from the computational
point of view, is the choice of the solution procedure for the associated sub-
system. We want to apply an iterative solver, since direct solvers become infea-
sible for large scale 3D problems. However, the system is difficult to solve due to
its ill-conditioning (related to infinite speed of propagation of pressure changes
in incompressible flows). Usually a multilevel solver is required in order to guar-
antee good convergence rates, independent of the mesh size (classical Krylov
solvers with ILU preconditioning are not scalable with that respect). In the case
of the stabilized methods, the addition of non-zero Dpp deteriorates the conver-
gence by a large factor [18]. This is because without the stabilization the system
has positive eigenvalues exclusively and the GMRES worst case convergence is
different for matrices having eigenvalues of both signs [17].

We select a classical algebraic multigrid method, AMG [19], for the approxi-
mate solution of the system in Step 2 of the SIMPLEC algorithm. Gauss-Seidel
iterations are used for smoothing at each level of the solver, with the coarser
systems obtained using the Galerkin projection. The system at the last level is
solved exactly using a direct solver. For the approximate solution we employ
a single V-cycle of the AMG algorithm. Standard restriction and prolongation
AMG operators [19] are used for projecting the solution between levels.

The key to the efficiency of the solver lies in the procedure for creating coarser
levels, i.e. the selection of the degrees of freedom from the finer level that are
retained at the coarser level. The construction of the hierarchy of system levels

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_15

https://dx.doi.org/10.1007/978-3-030-50420-5_15

6 D. Goik et al.

is done during the levels set-up phase of the solver, performed once per system
solution and followed by some number of V-cycle iterations. Usually one can
select less levels that would lead to slower convergence but a faster single V-cycle
iteration or more levels, with faster convergence and slower individual V-cycle
iterations.

The cost of the set-up phase depends on the number of levels and a partic-
ular algorithm used for coarse level creation. We use a classical approach, that
is based on partitioning, at each level, the degrees of freedom into two sets: in-
terpolatory (retained at the coarser level) and non-interpolatory (removed form
the system). In order to partition the DOFs, the notions of dependence and im-
portance are introduced [19]. The importance is a measure of how many other
rows are influenced by the solution for a given row. The relation opposite to the
influence is called dependence.

We adopt the following formula for finding the set Si of DOFs influencing a
given DOF [10] (with the system matrix entries denoted by aij):

Si ≡ {j 6= i : −aij ≥ αmax
k 6=i

(−aik)}

with the parameter α ∈ (0, 1) specifying the threshold for the strength of in-
fluence, that determines the inclusion of a DOF into the set Si (we call α the
strength threshold). An important observation is that only a single row of a ma-
trix itself defines what influences a particular DOF, making this definition easy
to use when the matrix is distributed on different computational nodes.

The DOFs are selected in the order of the number of DOFs that a given DOF
influences. After selection of a DOF all DOFs that are influenced by this DOF
are moved to the set of noninterpolatory degrees of freedom and the algorithm
continues.

In our solution we chose to run this algorithm on every computational node
separately, thus there is a possibility of dependencies between two DOFs on
the boundaries of the subdomains. In our approach we let the owner of a DOF
to assign it either to the set of interpolatory or noninterpolatory degrees of
freedom and then broadcast this decision to all adjacent subdomains. Because
of that procedure, the actual selections for different numbers of subdomains are
not the same. This can lead to different convergence properties, that eventually
make the numerical scalability of the solver problem dependent.

After the partition of DOFs, an interpolation matrix is created with each
DOF having it’s row and each interpolatory DOF having it’s corresponding
column. The rows associated with the interpolatory DOFs have just a single
entry equal to one in a column related to this DOF. The rest of the rows is filled
by the classic direct interpolation rules [19]. The interpolation matrix is used
for the restriction and prolongation operations, as well as for the creation of the
coarse systems using the Galerkin projection.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_15

https://dx.doi.org/10.1007/978-3-030-50420-5_15

A block preconditioner for incompressible flow simulations 7

4 Parallel implementation

The whole solution procedure is implemented within the finite element frame-
work ModFEM [13] with the PETSC library [1] employed for linear algebra
operations. ModFEM is a general purpose finite element software framework,
with modular structure [2], that uses special problem dependent modules to
create codes for different application domains [4]. In our setting the generic
ModFEM modules are used to manage computational grids (in particular to
perform domain decomposition for parallel execution) and to calculate element
stiffness matrices and load vectors for the particular incompressible flow problem
formulation that we employ.

We created a special ModFEM module for solving systems of linear equations
that implements the algorithm described in the paper. The module receives local
element matrices and vectors for the system of linear equations during Navier-
Stokes simulations, assembles them to the global system matrix and right hand
side vector, creates the other necessary preconditioner matrices, in particular
the AMG levels structure, and performs preconditioned residual computations
for the GMRES solver.

The module is built around matrix and vector data structures provided by
the PETSC library. The PETSC linear algebra data structures and operations
(including the sparse matrix-matrix product) serve as building blocks for the
preconditioner responsibilities. Apart from basic matrix and vector operations,
the only PETSC algorithm utilized during the set-up and solution phases is
parallel matrix successive over-relaxation which is adapted to serve as Gauss-
Seidel smoother. The parallel successive over-relaxation executes a configurable
number of local iterations for each subdomain and a configurable number of
global block Jacobi iterations, where blocks correspond to subdomain matrices.
Such hybrid algorithm, frequently used in parallel iterative solvers, results in
lower convergence rates than the Gauss-Seidel method at the global level, but
has much lower cost and provides good scalability [3].

During the parallel solution procedures, communication steps are required
only for global vector operations (norm, scalar product) and the exchange of
data during Gauss-Seidel/Jacobi iterations. The scheme for exchanging data for
ghost nodes is created by the generic ModFEM domain decomposition module
and passed to the special module.

In our implementation we finally have the following set of control parameters
to achieve the best GMRES convergence when using the developed precondi-
tioner (in terms of CPU time for reducing relative error by a specified factor):

– the number of Gauss-Seidel iterations in step 1 of the SIMPLE procedure
– the form of D−1vv in the construction of the preconditioner for step 2
– the method and accuracy of solving the system in step 2
• the number of pre-smooth steps at each level
• the number of post-smooth steps at each level
• the number of outer, additive Schwarz (block Jacobi) iterations and the

number of inner, multiplicative Schwarz (block Gauss-Seidel) iterations
for each smoothing step

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_15

https://dx.doi.org/10.1007/978-3-030-50420-5_15

8 D. Goik et al.

Fig. 1. 3D backward facing step - problem definition.

• the number of AMG levels and the size of the last level, for which a
direct solver is used

• strength threshold which affects how many DOFs are dropped on sub-
sequent levels

5 Numerical example

As a numerical example for testing the performance of the developed solver we
take a well known stationary flow problem – backward facing step in its 3D
form (Fig. 1). All boundary conditions are assumed as no-slip with zero velocity,
except the inflow boundary with parabolic (with respect to y dimension) inflow
velocity. The parameters are chosen in such a way, that the Reynolds number
of the flow is equal to 800, which makes the finite element as well as the linear
solver convergence difficult, but still remains in laminar regime. The step height,
H, and the inflow height, h, are both assumed equal to 0.5.

The actual computational domain with the dimensions 1x1x20 is triangulated
with an initial (G0) mesh having 38 000 elements and 23 221 nodes (Fig. 2). For
this mesh a stationary solution is obtained and then the mesh is uniformly refined
to produce a new, generation 1 (G1), mesh with 304 000 elements and 168 441
nodes (673 764 degrees of freedom in the solved linear system). For this mesh the
solution procedure is continued until the convergence and the same procedure is
repeated for the next meshes. The uniform refinements produce the meshes:

– generation 2 (G2): 2 432 000 elements, 1 280 881 nodes, 5 123 524 DOFs
– generation 3 (G3): 19 456 000 elements, 9 985 761 nodes, 39 943 044 DOFs

The numerical experiments were performed on different numbers of nodes
from the Prometheus system at Cyfronet AGH computing centre. Each node
has two 12-core Intel Xeon E5-2680v3 CPUs (2.5GHZ) and 128GB DRAM and
runs under Centos7 Linux version.

We present the performance measurements for a single typical time step and
one non-linear iteration during the simulation. For the purpose of our tests we
performed the GMRES solver iterations with high accuracy, stopping the process
when the relative residual dropped by the factor of 109.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_15

https://dx.doi.org/10.1007/978-3-030-50420-5_15

A block preconditioner for incompressible flow simulations 9

(a) computational domain

(b) vertical cross-section - mesh

(c) vertical cross-section - velocity magnitude

(d) horizontal cross-section at height H+0.5h - velocity magnitude

Fig. 2. 3D backward facing step problem – computational domain, G0 mesh and
Re=800 solution contours for a part of the computational domain.

During the tests we tried to establish the best set of control parameters to
be used for the multigrid phase of solving the system with approximated Schur
complement. Fig. 3 presents the comparison of execution times for a single iter-
ation of our solver on mesh G2, obtained with different sets of parameters. The
symbols used for different lines on the plot contain encoded parameter values, in
such a way that the symbol nr-lev-a-pre-b-post-c-in-d-out-e-alpha-f in-
dicates the configuration with: a levels, b presmoothing steps, c post-smoothing
steps, d inner, Gauss-Seidel iterations within single multigrid smoothing step, e
outer, block Jacobi (additive Schwarz) iterations within single multirid smooth-
ing step and the value of strength threshold α equal to f (the value 0 for the
last parameter indicates a very small coefficient, in our experiments equal to
0.0001).

Similar results were obtained for executions on other mesh sizes, thus some
general guidelines regarding the solver tuning can be deduced:

– additional AMG levels always speed up the convergence (less GMRES iter-
ations required) and execution time, hence the number of levels should be
such that additional level would not reduce the number of rows on the last
level

– more aggressive coarsening tends to produce better level structure in terms
of memory consumption and iterations execution time

– there is not much to be gained by manipulating local to global iterations
ratio

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_15

https://dx.doi.org/10.1007/978-3-030-50420-5_15

10 D. Goik et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 15 20 25 30

E
x
e
c
u
ti
o
n
 t
im

e
 o

f
m

u
lt
ig

ri
d
 i
te

ra
ti
o
n
s
 [
s
]

Number of MPI processes

nr−lev−4−pre−1−post−1−in−5−out−5−alpha−0
nr−lev−4−pre−1−post−1−in−2−out−2−alpha−0
nr−lev−4−pre−1−post−1−in−1−out−1−alpha−0
nr−lev−4−pre−1−post−1−in−5−out−5−alpha−0
nr−lev−4−pre−5−post−1−in−1−out−1−alpha−0
nr−lev−4−pre−1−post−5−in−1−out−1−alpha−0

nr−lev−15−pre−1−post−1−in−2−out−2−alpha−0.5
nr−lev−10−pre−1−post−1−in−1−out−1−alpha−0
nr−lev−10−pre−0−post−1−in−1−out−1−alpha−0

Fig. 3. 3D backward facing step problem – execution time on the Prometheus cluster
for the iteration phase of the multigrid algorithm for different combinations of param-
eters (description of line symbols in the text)

– time spent in GMRES should be prioritized over time spent in the precondi-
tioner i.e. adding more iterations does not always improve the convergence

The best configuration in our experiments had the most aggressive coarsening
possible, no limit imposed on the number of AMG levels and just one post-
smoothing iteration with one global and local iteration, without pre-smoothing.

For this best configuration we show in Table 1 the comparison of the total
linear system solution time on a single cluster node for our developed solver and
a high performance direct solver (in this case the PARDISO from the Intel MKL
library). The execution of the ModFEM code was done in MPI only mode, while
the direct PARDISO solver was running in OpenMP only mode.

Table 1. 3D backward facing step problem – execution time (in seconds) for solving
the system of linear equations (673 764 DOFs) using two solvers: the direct PARDISO
solver from the Intel MKL library and the GMRES solver with the developed block
preconditioner based on AMG

number of cores

solver 1 2 4 8 16

PARDISO 176.46 109.09 60.34 39.17 25.19

GMRES+AMG 115.51 56.61 29.93 16.87 10.39

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_15

https://dx.doi.org/10.1007/978-3-030-50420-5_15

A block preconditioner for incompressible flow simulations 11

 0

 20

 40

 60

 80

 100

 120

 10 15 20 25 30 35 40

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

Number of MPI processes

Ndof=673 764
Ndof=5 123 524

(a) Execution time

 0

 1

 2

 3

 4

 5

 10 15 20 25 30 35 40

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

Number of MPI processes

Ndof=673 764
Ndof=5 123 524

perfect speed-up

(b) Speed up

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40

E
ff

ic
ie

n
c
y
 o

f
p

a
ra

lle
liz

a
ti
o

n

Number of MPI processes

Ndof=673 764
Ndof=5 123 524

(c) Efficiency

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 10 100

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

Number of MPI processes

approx. 160 000 DOFs per process

(d) Weak scalability

Fig. 4. 3D backward facing step problem – parallel performance metrics for two prob-
lem sizes (Ndof equal to 673 764 and 5 123 524): execution time, speed up and parallel
efficiency for the growing number of cluster processors plus weak scalability results as
the execution time for 4, 32 and 256 processes with approx. 160 000 DOFs per process
(subdomain)

In order to assess the computational scalability of the developed solver we
performed a series of tests for the best algorithmic version. Fig. 4 presents the
parallel performance characteristics obtained for two problem sizes (the number
of DOFs equal to 673 764 and 5 123 524) and parallel runs on different number of
processors in the Prometheus cluster. The metrics include execution time, stan-
dard parallel speed up and efficiency, as well as the results for weak scalability
study. The latter was performed for approximately 160 000 DOFs per subdo-
main and three numbers of cluster nodes, with the last system, solved using 256
processes, having 39 943 048 DOFs.

The weak scalability study was also used to assess the numerical scalability of
the algorithm. The results indicated that the convergence of the solver has not
deteriorated for subsequent, refined meshes. The overall GMRES convergence
rates were equal to 0.24 for G1 mesh, 0.14 for G2 mesh and 0.19 for G3 mesh.
This strong convergence was obtained with the same time step length for all
meshes and, hence, the growing CFL number for refined meshes. The different
numbers of subdomains for each case influenced the convergence results as well.
We plan to investigate these issues in forthcoming papers.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_15

https://dx.doi.org/10.1007/978-3-030-50420-5_15

12 D. Goik et al.

6 Conclusions

We have shown that a proper design and tuning of parameters for algebraic
multigrid method, used in block preconditioners employed to accelerate the con-
vergence of GMRES method in finite element incompressible flow simulations,
can lead to fast convergence and good scalability. The tests for a large scale ex-
ample problem of 3D backward facing step produced solution times in the range
of one minute for linear systems with approx. 40 million degrees of freedom and
256 processes (cores). For this size the standard direct methods or the GMRES
method with standard ILU preconditioners cannot produce the results in the
same order of time. We plan further investigations to show the strategies for op-
timal parameter selection depending on the CFL number in time discretization,
that should lead to methods specifically adjusted to transient and steady-state
problems.

References

1. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of par-
allelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M.,
Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing. pp. 163–
202. Birkhäuser Press (1997)

2. Banaś, K.: A modular design for parallel adaptive finite element computational ker-
nels. In: Bubak, M., van Albada, G., Sloot, P., Dongarra, J. (eds.) Computational
Science — ICCS 2004, 4th International Conference, Kraków, Poland, June 2004,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 3037, pp. 155–162.
Springer (2004)

3. Banaś, K.: Scalability analysis for a multigrid linear equations solver. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) Parallel Pro-
cessing and Applied Mathematics, Proceedings of VIIth International Conference,
PPAM 2007, Gdansk, Poland, 2007. Lecture Notes in Computer Science, vol. 4967,
pp. 1265–1274. Springer (2008)

4. Banaś, K., Ch loń, K., Cybu lka, P., Michalik, K., P laszewski, P., Siwek, A.: Adap-
tive finite element modelling of welding processes. In: Bubak, M., Kitowski, J.,
Wiatr, K. (eds.) eScience on Distributed Computing Infrastructure - Achieve-
ments of PLGrid Plus Domain-Specific Services and Tools, Lecture Notes in Com-
puter Science, vol. 8500, pp. 391–406. Springer International Publishing (2014).
https://doi.org/10.1007/978-3-319-10894-0 28

5. Brooks, A., Hughes, T.: Streamline upwind/Petrov-Galerkin formulations for con-
vection dominated flows with the particular emphasis on the incompressible Navier-
Stokes equations. Computer Methods in Applied Mechanics and Engineering 32,
199–259 (1982)

6. Cyr, E.C., Shadid, J.N., Tuminaro, R.S.: Stabilization and scalable block precon-
ditioning for the Navier-Stokes equations. J. Comput. Physics 231(2), 345–363
(2012). https://doi.org/10.1016/j.jcp.2011.09.001

7. Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers
with applications in incompressible fluid dynamics. Oxford University Press (2005)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_15

https://dx.doi.org/10.1007/978-3-030-50420-5_15

A block preconditioner for incompressible flow simulations 13

8. Elman, H., Howle, V., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy
and comparison of parallel block multi-level preconditioners for the incompress-
ible Navier-Stokes equations. J. Comput. Phys. 227(3), 1790–1808 (Jan 2008).
https://doi.org/10.1016/j.jcp.2007.09.026

9. Franca, L., Frey, S.: Stabilized finite element methods II: The incompressible
Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineer-
ing 99, 209–233 (1992)

10. Henson, V.E., Yang, U.M.: Boomeramg: A parallel algebraic multigrid solver
and preconditioner. Applied Numerical Mathematics 41(1), 155–177 (2002).
https://doi.org/https://doi.org/10.1016/S0168-9274(01)00115-5

11. Kelley, C., Keyes, D.: Convergence analysis of pseudo-transient continuation. SIAM
Journal on Numerical Analysis 35, 508–523 (1998)

12. Koric, S., Lu, Q., Guleryuz, E.: Evaluation of massively parallel linear sparse solvers
on unstructured finite element meshes. Computers & Structures 141, 19–25 (2014).
https://doi.org/https://doi.org/10.1016/j.compstruc.2014.05.009

13. Michalik, K., Banaś, K., P laszewski, P., Cybu lka, P.: ModFEM – a computational
framework for parallel adaptive finite element simulations. Computer Methods in
Materials Science 13(1), 3–8 (2013)

14. Pardo, D., Paszynski, M., Collier, N., Alvarez, J., Dalcin, L., Calo, V.M.: A sur-
vey on direct solvers for galerkin methods. SeMA Journal 57, 107–134 (2012).
https://doi.org/https://doi.org/10.1007/BF03322602

15. Patankar, S.V.: Numerical heat transfer and fluid flow. Series on Computational
Methods in Mechanics and Thermal Science, Hemisphere Publishing Corporation
(CRC Press, Taylor & Francis Group) (1980)

16. Pernice, M., Tocci, M.: A multigrid-preconditioned Newton–Krylov method for the
incompressible Navier–Stokes equations. Industrial and Applied Mathematics 23,
398–418 (08 2001). https://doi.org/10.1137/S1064827500372250

17. Saad, Y.: Iterative methods for sparse linear systems. PWS Publishing, Boston
(1996)

18. Segal, A., Rehman, M., Vuik, C.: Preconditioners for incompressible Navier-Stokes
solvers. Numerical Mathematics – Theory, Methods and Applications 3 (08 2010).
https://doi.org/10.4208/nmtma.2010.33.1

19. Stüben, K.: A review of algebraic multigrid. Journal of Com-
putational and Applied Mathematics 128(1), 281–309 (2001).
https://doi.org/https://doi.org/10.1016/S0377-0427(00)00516-1

20. Thomas, S.J., Ananthan, S., Yellapantula, S., Hu, J.J., Lawson, M., Sprague, M.A.:
A comparison of classical and aggregation-based algebraic multigrid precondition-
ers for high-fidelity simulation of wind turbine incompressible flows. SIAM J. Sci-
entific Computing 41(5), S196–S219 (2019). https://doi.org/10.1137/18M1179018

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50420-5_15

https://dx.doi.org/10.1007/978-3-030-50420-5_15

