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Abstract. In this paper, we model influenza propagation in the Rus-
sian setting using a spatially explicit model and a detailed human agent
database as its input. The aim of the research is to assess the applicabil-
ity of this modeling method using influenza incidence data for 2010-2011
epidemic outbreak in Saint Petersburg and to compare the simulation
results with the output of the compartmental SEIR model for the same
outbreak. For this purpose, a synthetic population of Saint Petersburg
was built and used for the simulation via FRED open source modeling
framework. The parameters related to the outbreak (background im-
munity level and effective contact rate) are assessed by calibrating the
compartmental model to incidence data. We show that the current ver-
sion of synthetic population allows the agent-based model to reproduce
real disease incidence.
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1 Introduction

Today 55% of world’s population lives in cities, and this number, according to
UN predictions, is expected to reach 68% by 2050 [31]. Thus, the importance of
cities for human societies is increasing over time. Due to their intricate structure,
modern cities constitute a perfect example of complex systems, and our ability
to understand them scientifically is limited [5]. So is the situation with the social
and economic processes within them.

One of the processes intrinsically connected with urban structure is influenza
epidemics. Seasonal influenza causes repetitive epidemic outbreaks resulting in
high worker/school absenteeism, productivity losses and death cases due to dis-
ease complications. According to WHO [33], the corresponding annual number
of mortality cases reaches whopping 500 thousand. To anticipate the incoming
outbreaks and prepare healthcare infrastructure to fight with their detrimental
ramifications, statistical and mathematical models are widely used. The pre-
dictive force of these models is limited by the fact that the influenza outbreak
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dynamics in urban settings is driven by a lot of factors, some of which are hard to
be quantified. Along with the weather factors [29], [20], [27], the important role is
played by the behavior of the human population, such as daily migration patterns
resulting in different effective contact probabilities [6], [30]. In fact, the bigger a
city is, the milder is the response of the disease incidence to climate forcing and
the more important the human-related factors become [8]. These factors also
deserve attention due to occurrence of background immunity against influenza,
which is a result of repetitive flu outbreaks caused by similar flu strains [17].
It might be assumed that peculiarities of commuting patterns of citizens and
geographical distribution of their dwellings subsequently cause different distri-
bution of effective contacts between the susceptibles and the infectives, leading
to changes in immunity levels of the individuals in different cities. For instance,
a highly connected city, where mass action law assumption [34] generally holds,
might have an epidemic dynamics and consequently a distribution of the im-
mune quite different from the city with apparent geographical clustering. The
accumulation of these differences due to faster circulation of flu virus around the
globe might be the reason of the failure of the approach which was earlier used to
predict flu epidemics in Soviet Union [15]. The mentioned approach was based
on the assumption that a forthcoming influenza outbreak dynamics could be
predicted using the data from the cities already affected by the epidemic during
the season under consideration, which worked in 1970s, but is not true any-
more [22]. Modeling flu propagation using detailed population structures which
(somewhat) accurately reflect the peculiarities of urban contact patterns might
allow us to quantify the role of contact patterns on the formation of background
immunity and to assess how the differences in city structures lead to different
flu epidemic dynamics. This paper is considered to be the first step in the stated
direction.

The aim of this work is to create a detailed description of urban population
in the Russian setting and couple it with agent—based modeling framework to
perform a simulation of flu dynamics. Using our previous results obtained in the
field of flu outbreak modeling in Russia [19], [21], we want to compare the output
of a spatially explicit model with the one of standard SEIR compartmental
model of Kermack—McKendrick type and to demonstrate the ability of the former
to produce more plausible results than the latter. For this purpose, we regard
influenza outbreak in Saint Petersburg in 2010-2011 as a case study. The city was
chosen due to large populace (it’s the second largest city in Russia), economic
and cultural importance, and abundance of detailed data on influenza incidence
(the records are available from 1935).

2 Synthetic population

“Synthetic population” is a synthesized, spatially explicit human agent database
(essentially, a simulated census) representing the population of a city, region or
country. By its cumulative characteristics, this database is equivalent to the real
population but its records does not correspond to real people — this fact helps

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-22734-0_36 |



https://dx.doi.org/10.1007/978-3-030-22734-0_36

Spatial modeling of influenza outbreaks. . . 3

avoid privacy issues. In our research, we employed the approach for synthetic
population generation developed by RTT International [32], which was used by
various research groups to create populations for 50 US states, along with an-
other regions and countries. Statistical and mechanistic models built on top of
the synthetic populations helped tackle a variety of research problems, including
those connected with public health. Statistical analysis of opioid-related over-
doses in Cincinnatti [4] can be named as an example.

According to the standard of RTI International, a synthetic population con-
sists of several txt-files, each of them containing a table with every row being a
single record corresponding to some entity — an individual, a household, a work-
place, a school, etc. The full list of files with their short description is presented
in Table 1. Sticking to the same standard, we generated the files corresponding
to the population of Saint Petersburg. Since the data available for Saint Peters-
burg was not complete, we altered or omitted some of the methods, resulting in
a simplified population, which, however, seems to satisfy our demands related
to influenza modeling. The details of input data we used and the algorithms we
employed to generate the population follow.

2.1 Household data

The principal data source for our synthetic population is 2010 data from “Edi-
naya sistema ucheta naseleniya Sankt Peterburga” (“Unified population account-
ing system of Saint Petersburg”) [11]. The data is represented in a form of Ex-
cel spreadsheets containing records with house addresses and the corresponding
number of dwellers of certain age and gender (see Table 2).

To match the household addresses with the geographical coordinates and
assess the plausibility of the obtained geographical data, a computational al-
gorithm was developed and implemented using Python programming language.
The details of the algorithm implementation follow.

Adding object coordinates.

— For each record:
e Form the address string using the information from the address fields of
the record in the format ”city” + ”street” 4+ ”house”.
e Feed the address string to Yandex.Geocoder online service [36] which
returns the latitude and the longitude of the object by this address.
e Add coordinates to a record.

Removing implausible data. Since the record addresses were apparently derived
from handwritten data or manually typed, in some cases they are incomplete
or contain typos. The geocoder we used always returns two coordinates as an
output, no matter whether he processed the input successfully or not. If an
address is not interpreted correctly, Yandex.Geocoder makes guesses on what
the correct address should be, which often results in semi-random coordinates.
We use an empirical algorithm to filter out those obviously senseless results.
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File

Contents

Files used in the current population version

households.txt

people.txt

schools.txt

workplaces.txt

Contains the location and descriptive attributes for each household.
Household records in the households.txt file link to individual person
records in the people.txt table.

Contains a record for each person, along with his or her age and sex.
These synthetic person records link to the households.txt file (via the
sp-hh_id field)

Contains a record for each school, along with its zip code, maximum
capacity and coordinates

Contains a record for each workplace, along with its coordinates and
size

Empty or omitted files

hospitals.txt

gq.txt

gq-people.txt

pums_p.txt

pums_h.txt

Contains a record for each hospital, along with its coordinates, number
of physicians and beds. Contains zero records in this version of the
synthetic population.

Contains a record for each general quarters, along with their type
(prisons, student dorms, etc), coordinates and capacity. Contains zero
records in this version of the synthetic population.

Contains a record for each person, which lives in general quarters, along
with his or her age and sex. These synthetic person records link to the
gq.txt file (via the sp_gq-id field). Contains zero records in this version.
Contains personal records from the public use microdata series. Links
to the people.txt file the serialno field. Absent in this version of the
synthetic population.

Contains household records from the public use microdata series. Links
to the households.txt file the serialno field. Absent in this version
of the synthetic population.

Table 1.

File structure of a synthetic population for Saint Petersburg.

For this procedure, we rely on a number of empirical assumptions related to
matches between the location (coordinate) and the text address. E.g., if there
are multiple addresses to which only one pair of coordinates is assigned, we
remove all such records from the database except the first one, summing the
corresponding numbers of dwellers.

2.2 School data

The list of schools and their addresses was formed manually using the data from
the official web—site of the Government of Saint Petersburg [12]. The coordinates
of schools were found using Yandex.Geocoder in the same fashion, as it was done

for dwellings.
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Column names Contents

city, street, house Dwelling address

g0, gl ... g100 Number of female dwellers of ages 0,1,...,100
m0, ml ... m100 Number of male dwellers of ages 0,1,...,100

Table 2. Data source format.

2.3 'Workplace data

The distribution of working places for adults and their coordinates were derived
from the data obtained with the help of Yandex.Auditorii API [35]. Initially
the data was available in a form of a .geojson file which consisted of relative
workplace size assessments for each of the cells in a hexagonal grid (see Figure 1).
This data was normalized using the official cumulative employment numbers [10].
Synthetic workplace records were created by assigning the calculated number of
employees in each hexagonal cell to imaginary geographical location coinciding
with the center of this cell.

Assessment of
e workplace sizes
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Fig. 1. The distribution of working places in St Petersburg. The numbers are given
before the normalization.
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2.4 Assigning people to schools and workplaces

We assumed that young people aged 7 to 17 attend schools, and the adults of
working age (18 to 55 for males and 18 to 60 for females) might be working.
Iterating through the list of records in people.txt, we were assigning each
person to a closest school or working place, until they are filled to capacity or
there is no more people to be assigned.

3 Agent-based modeling

An open-source framework FRED [13], [26] was used for the simulations. The
framework has discrete time, with the modeling step equal to one day. The
epidemic process is initiated by assigning randomly an infectious status to some
individuals in the population at the beginning of the simulation. In addition to
that, the infection can be seeded according to a user-specified schedule, reflecting
the external infection process.

The contacts among the individuals that lead to new infection cases are
modeled in the following way.

— Each agent in the population potentially interacts with other agents with
whom he shares activity locations. These locations include schools, work-
places, households and home neighborhoods (defined as 1 km square cells
around the agent’s household).

— During the weekends, schools are considered to be closed and most workers
equally do not attend their working places. At the same time, the number
of neighborhood contacts increases by 50%.

— The rate of effective contacts in a particular activity location depends on the
expected number of contacts per infectious person per day and the infection
transmission probability. The expected number of contacts is considered not
to be dependent on the place size.

The output of the framework in a form of csv-files contains quantities and
spatial distributions of individuals of four groups (susceptible, exposed, infected,
recovered) at every time step. We used Python programming language and QGIS
open source software to process the results and create maps and incidence graphs.
An example of the map of influenza propagation is shown in Figure 2.

3.1 Influenza incidence data

The original dataset provided by the Research Institute of Influenza [1] contains
cumulative weekly incidence, i.e., the number of new acute respiratory infection
(ARI) cases per day in Russian cities, which includes influenza and other respi-
ratory infections. Before the model fitting, we had to refine the incidence data by
restoring the missed values and correcting the under-reporting biases. We also
needed to extract flu incidence from the cumulative ARI incidence data. Corre-
sponding algorithms are described in detail in [20], here we introduce briefly the
sequence of operations.
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Fig. 2. The distribution of disease—{ree (green) and infected (red) households in Saint
Petersburg: (a) Day 1, (b) Day 8.

— Under-reporting correction. Since infected people avoid visiting health-
care facilities during holidays, the corresponding weekly prevalence is lower
than the actual number of newly infected. This under-reporting bias can be
corrected by means of cubic interpolation [3] using the incidence registered
in the adjacent weeks.

— Bringing the incidence data to daily format. Daily incidence is ob-
tained with the help of cubic interpolation of weekly incidence. We assume
that n}/* = nj; /7, where n})  is the weekly incidence taken from the
database and ng;f}“ is the daily incidence for Thursday of the corresponding
week.

— Extracting incidence data related to influenza outbreak. At first, the
algorithm finds higher non-influenza ARI incidence level, which corresponds
to average daily number of newly infected during the months when influenza
might occur in temperate regions (figure 3, red horizontal dashed line). The
part of the graph, which is attributed to a flu outbreak (figure 3, red solid
line), should have its peak well above the higher ARI level. It should also
comply with the time period during which the ARI prevalence exceeds the
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1000 ARI incidence, Saint Petersburg, 01 Jul 2003 to 30 Jun 2004
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Fig. 3. Influenza outbreak data extraction from the interpolated ARI incidence.

non—epidemic ARI threshold assessed in the Flu Research Institute (figure 3,
red rectangle). The beginning and ending of the extracted curve is chosen to
match the higher ARI incidence level. The first incidence point of the curve
is considered to be the first day of the epidemic outbreak.

3.2 Fitting a SEIR model to data

The model we use for fitting is a standard SEIR compartmental model in a form
of a system of ordinary differential equations (see [19] for the details). Let Z(@*)
be the set of incidence data points loaded from the input file and corresponding
to one particular outbreak. Assume that the number of points is ¢1, which equals
the observed duration of the outbreak. The fitting algorithm selects the values
of model parameters corresponding to the model output which minimizes the
distance between the modeled and real incidence points:

t
Fv(Z(mod)7 Z(dat)) _ Zl(zgmod) . Zl(dat))g7
i=0
Here zi(dat) and zngd) are the absolute incidence numbers for the i-th day taken
from the input dataset and derived from the model correspondingly. The limited-
memory BFGS optimization method is used to find the best fit [24]. Since the
existence of several local minima is possible, the algorithm has to be launched
several times with different initial values of input variables. The best fit is chosen
as a minimum among the distances achieved from all the algorithm runs. To
characterize the goodness of fit we utilize the coefficient of determination R? < 1.
This coefficient shows the fraction of the response variable variation that is
explained by a model [25]. The detailed description of the fitting procedure is
available in [19], [21].
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3.3 Simulation

By fitting the SEIR model to ARI incidence for influenza outbreak in St Peters-
burg in 2010-2011 (see Figure 5a), we assess two parameters: the background
immunity level 1 — « and the effective contact intensity A. The detailed data on
the distribution of dwellers we used gave slightly less people in total than it was
claimed by official statistics, so we normalized the susceptible ratio a to account
for this. The obtained parameter values were used in FRED simulation along
with the default values for influenza epidemics provided with the framework (see
Table 3). The overall scheme of the described process is presented in Fig. 4.

ARl incidence
database

Synthetic
population

SEIR model o Epidemic

N , A
calibration / parameters » FRED simulation

Spatial
distribution
of the
infected

Fig. 4. FRED simulation scheme

The simulation was run 100 times with different seed values for the random
number generator. Influenza incidence data obtained as a result of each simula-
tion run was used to find confidence intervals for the daily influenza incidence
— see Figure 5b.

As Figure 5 shows, despite the imminent uncertainty in synthetic population
data, the output of the agent-based model demonstrates a satisfactory agree-
ment with actual ARI incidence. Also, apart from the compartmental SEIR
model, spatially explicit simulation demonstrates the right—skewed incidence
curve, which better conforms to ARI data. This form of the curve might reflect
different number of social connections between the individuals. The so called
“superspreaders” are infected first and cause numerous infection cases, whereas
the less socialized persons got reached by the flu later and contribute somewhat
to infection process, making the decline of disease incidence slower. The value
1 — « of background immunity level used in both models leads to almost the
same peak heights (see Table 4).
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FRED simulation, daily flu incidence in St Petersburg, 2010-2011
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Fig. 5. (a) SEIR model calibration; (b) FRED output generated using the obtained
parameter values. Note that the first graph demonstrates the cumulative ARI incidence
(influenza and other acute respiratory diseases), whereas the second one shows disease
incidence attributed solely to influenza, thus the baselines on the graphs correspond to
a seasonal ARI level in the first case (around 4000 newly infected per week), and zero

in the second case.
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Parameter name Description Value Source
INF.transmissibility A coefficient that modulates 6.55 Estimated
the transmissibility of a con-
dition
INF.S.susceptibility A ratio of susceptible indi- 0.46 Estimated

viduals in the population
INF.E.duration distribution Distribution of exposed lognormal Default
state duration

INF.E.duration median Median of exposed state du- 1.9 Default
ration

INF.E.duration dispersion Dispersion of exposed state 1.23 Default
duration

INF.Is.duration distribution Distribution of infected lognormal Default
state duration

INF.Is.duration_median Median of infected state du- 5.0 Default
ration

INF.Is.duration dispersion Dispersion of infected state 1.5 Default
duration

Table 3. Model parameters ('INF’ stands for ’influenza’, ’Is’ is ’infectious symp-
tomatic’)

Parameter name Data Simulation
Outbreak duration, days 65 51
Maximum incidence day (from the outbreak onset) 22 15
Maximum incidence height, cases per day 5756 5126

Table 4. The incidence curve parameters obtained in the simulation compared to those
of the real outbreak

4 Discussion and future work

As we showed in this research, coupling of synthetic populations with agent—
based models is a feasible approach which allows to perform spatially explicit
influenza propagation modeling in Russian settings, even when a limited number
of data is used to reconstruct the urban population. The apparent drawback of
the current synthetic population is the procedure of assigning people to schools
and workplaces, described in Section 2.4. The idea of picking the closest avail-
able spot in a school/workplace was favored for its simplicity, but it is obviously
unrealistic. We plan to create several populations corresponding to different as-
signing algorithms (from picking a workplace/school at random within the whole
city to seeking it in a limited radius from the person’s home location) and to
compare the results of the simulation runs. By doing that, we expect to quantify
the variance in outbreak duration, peak day and peak height related to contact
networks of different topological structures.
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Another drawback of the performed simulation lies in the approximate na-
ture of deriving disease-related parameters for FRED. Particularly, we cannot
exactly match the value of INF.transmissibility to value of A from the com-
partmental model, because they are not equivalent, although correlated. To ob-
tain more realistic disease incidence generated by the model, global optimization
techniques will be used by the authors in the same fashion as it was done earlier
for the compartmental SEIR models [28]. Since repetitive simulations with dif-
ferent input parameter sets are computationally expensive, we consider applying
methods for assessing and reducing the uncertainty in disease-related input pa-
rameters [2] which will decrease the state space of the model, and implementing
an agent—based model using general-purpose computing on graphics processing
units [23] to achieve a speedup.

In the current research we did not consider contacts in public transport.
Although the research on the role of New York subway in disseminating influenza
showed that its effect is slight [7], we still find it necessary to question this
conclusion, because Russian commute patterns and the nomenclature of social
groups which use metro may differ from the one of New York.

We assume that, in the long run, the influenza propagation modeling using
synthetic populations will allow us to:

— classify the cities into several groups, depending on their geographical struc-
ture, contact pattern types and, subsequently, peculiarities of influenza dy-
namics and use models calibrated to one cities to predict epidemics in the
others within the same group;

— reconstruct the pattern of background immunity formation as a function of
urban and epidemic factors.

As a byproduct, synthetic populations created for the cities under consideration
will be freely available and might facilitate solving urban issues with the help of
modeling. The immediate gain we expect from the created synthetic population
for Saint Petersburg is that research groups within our department, which work
with problems such as transport planning [16], [18], ambulance dispatching [9]
and crime rate assessment [14], might want to switch from gathering data from
scratch for every particular statistical or agent—based model to using a unified
population. Since the synthetic population conforms to a certain defined stan-
dard, it might be easily reused in different projects and elaborated further by
mutual efforts to everyone’s benefit.
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