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Abstract. Scientific datasets are becoming increasingly challenging to
transfer, analyze, and store. There is a need for methods to transform these
datasets into compact representations that facilitate their downstream
management and analysis, and ideally model the underlying scientific
phenomena with defined numerical fidelity. To address this need, we
propose nonuniform rational B-splines (NURBS) for modeling discrete
scientific datasets; not only to compress input data points, but also to
enable further analysis directly on the continuous fitted model, without
the need for decompression. First, we evaluate three different methods for
NURBS fitting, and compare their performance relative to unweighted
least squares approximation (B-splines). We then extend current state-of-
the-art B-spline adaptive approximation to NURBS; that is, adaptively
determining optimal rational basis functions and weighted control point lo-
cations that approximate given input data points to prespecified accuracy.
Additionally, we present a novel local adaptive algorithm to iteratively
approximate large data input domains. This method takes advantage of
NURBS local support to refine regions of the approximated model, acting
locally on both input and model subdomains, without affecting other
regions of the global approximation. We evaluate our methods in terms of
approximated model compactness, achieved accuracy, and computational
cost on both synthetic smooth functions and real-world scientific data.

Keywords: Piecewise Approximation · Adaptive Methods · Domain
Partitioning · Parallel Algorithms.

1 Introduction

Advancing science through high-performance computing (HPC) depends on
managing, analyzing, and visualizing data generated from large-scale simulations
or experiments. Much attention has been paid to how best to scale compute
capabilities in terms of extreme concurrency and high numbers of operations per
second. That, in addition to the prevalence of IoT and scientific observational
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devices, led to unprecedented data volumes and rates. However, there is currently
a gap between our increased ability to generate raw data and our ability to store,
analyze, and produce scientific results based on these data. This paper seeks to
bridge this gap by building upon a fundamentally different kind of data model,
termed Multivariate Functional Approximation (MFA) [19], that conserves
resources while improving data understanding and sharing. The new model, which
can accommodate many types of scientific datasets on HPC architectures, provides
compression and facilitates analytical reasoning not possible before. Moreover,
the accuracy of the model is known and guaranteed to user prescription.

The MFA model relies on fitting piecewise smooth functionals to multi-
dimensional discrete input data. NURBS basis functions are chosen in MFA
because they allow the model to be directly usable in downstream analytics and
visualization without the need to evaluate (decode) the entire model. This is due
to well established NURBS features: NURBS models are continuous across all
the input domain, differentiable up to the degree of the used basis functions, and
preserve geometric and statistical properties of the input discrete data points.
Model continuity provides implicit and inexpensive point evaluation anywhere
in the input domain, meaning the model can be sampled at a different mesh
resolution than the original discrete data. Differentiability is of particular interest
to applications relying on gradient fields, useful for feature detection and tracking,
and high-order derivatives, to guide mathematical optimization algorithms for
example. Those features are the main reason for NURBS being the de facto
standard for modeling three-dimensional shapes in Computer Aided Design
(CAD) applications.

In this paper, we extend NURBS models to high dimensional scientific data,
evaluate different methods for fitting a NURBS model in contrast to a nonrational
B-spline model, present adaptive refinement methods to guarantee the accuracy
of the model in representing input data, and develop an algorithm to refine locally
without resolving the model over the whole input domain or compromising the
continuity of the model. The motivation behind this local refinement algorithm
is to fit large input domains for which a global solve is expensive, more so if the
solve needs to be repeated multiple times to reach a fitting error bound.

2 Background

Parametric representations of curves, surfaces, volumes, and hyper-volumes
traditionally involve fitting polynomials to known input points. However, the
main drawback of polynomial fitting is that its basis function is ‘global’; i.e., the
fitted value at a given domain location depends on values from all input points
across the whole domain. A solution to this problem is to employ additional
basis functions that define a local support of the polynomial fit, such as spline
bases [9], and radial basis functions [17]. Here, we choose spline bases for their
simplicity and desired features highlighted in the previous section, making them
suitable as a new data representation for scientific applications.
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2.1 B-spline Approximation

A basis spline (B-spline) function is a piecewise polynomial, where each polynomial
piece is defined over a subdomain or partition of the whole input domain. The
locations where these partitions meet are termed knots. Knot values are usually
stored in D knot vectors, each of the form Td = {t1, ..., tkd}, where kd is the
number of knots for the dth dimension of domain dimensionality D. Each Td vector
is sorted in nondecreasing order, and defined in parameter space U ∈ [0, 1]D. The
domain parameterization function, M(x̄), is a mapping function RD → [0, 1]D,
from a point in input coordinates x̄ to a point in parameter space ū ∈ U . This
mapping function is usually determined beforehand, along with knot spacing
(uniform vs non-uniform), spline basis degree p, and number of control points
n = {n1, ..., nD}. Control points define the shape of the approximated model,
so the main objective of B-spline fitting is to find control point locations, or
encoding, that, when decoded, closely represent variations in the input variable
field (see Figure 1). In practice, n is usually prespecified by the user, and the
number of knots for the dth dimension is directly calculated as kd = nd + p+ 1.
Automatically deciding these parameters given input data points is an active
research area, and beyond the scope of this paper. The adaptive refinement
methods presented here start from an initial number of knots, and control points,
then iteratively increase knot resolution where the fitting error is above a certain
error metric bound.

(a) (b)
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Fig. 1. (a) A 1D curve (blue) and its quartic B-spline approximation (green) using 9
control points (red). (b) A plot showing the 9 4-th degree basis functions (arbitrary
colors) used by the B-spline in (a), along with knot locations in parameter space.

A decoded value from a B-spline model is computed as

V (ū) =

n∑
i=1

Pi

D∏
d=1

Ni,p(ud), (1)
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where V (ū) is the decoded hypervolume value at ū = {u1, ..., uD}, and Ni,p(ud)
is the p-degree B-spline basis function for control point Pi at parameter location
ud. Ni,p(ū) can be precomputed and stored in memory, or computed as needed
on the fly, by the Cox-de Boor recursion formula [7,8].

As seen from Equation 1, decoding one point from the MFA model involves
a tensor product of the basis functions with the d-dimensional mesh of control
points. Encoding an MFA model for input point field I = {y1, ..., ym} of size m
is traditionally achieved by solving a least squares problem derived from the L2

norm defining the accuracy of the encoded model by the sum of squared errors
(SSE) metric [20],

SSE =

m∑
i=1

‖V (M(xi))− I(xi)‖2 . (2)

2.2 NURBS

NURBS, as the name suggests, is the rational extension of B-splines. It was first
introduced and used within CAD software tools because the B-spline formulation
is incapable of accurately representing conics [22]. For our specific use case here,
using NURBS results in a more compact model than using B-splines.

The difference between the rational equations of NURBS and B-splines is
associating a weight variable wi with each control point Pi. Decoding a NURBS
MFA model follows a similar approach to Equation 1 for B-splines, with the
exception of substituting Ni,p(ū) with rational basis functions Ri,p(ū), defined as

Ri,p(ū) =
Ni,p(ū)wi∑n
j=1Nj,p(ū)wj

. (3)

NURBS encoding, however, is not as straightforward as the decoding modification.
The division in Equation 3 results in a nonlinear problem. That is why most
NURBS implementations resort to using uniform weights (all set to 1) that are
solved like B-spline models, and then manually tweaked by users for additional
model shape control.

3 Adding Weights

There has been some work on approaches for solving the nonlinear problem of find-
ing NURBS control point locations and weights simultaneously. Laurent-Gengoux
and Mekhilef [15] manually derive analytical gradients of the nonlinear problem
w.r.t. the control point locations and weights, and also the knot locations. The
gradients are then employed by a numerical optimization method to minimize
a cost function with appropriate geometric continuity constraints. The method
relies on a specific complicated and time-consuming optimization algorithm, and
the derivation is only valid for cubic (degree 3) NURBS. In order to overcome
these shortcomings, Xie et al. [28] propose an alternating linear projection ap-
proach, where the control point locations are first determined using least squares,
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then their corresponding weights are found using conjugate gradient descent
optimization methods. These two steps are then repeated until convergence. An
alternative approach is an explicit two-step linear scheme proposed by Ma and
Kruth [16]. In this explicit method, control point weights are first identified from
a homogeneous system using symmetric eigenvalue decomposition and linear
programming, and their locations are subsequently found using least squares. A
third method involves the use of automatic differentiation to directly calculate
the analytical derivative of the error function in Equation 2 w.r.t both Pi and wi
in one step. Other notable approaches that also attempt to directly find control
point locations and weights at the same time include the use of metaheuristic
techniques, such as evolutionary and swarm intelligence search algorithms [26,23].

3.1 Automatic Differentiation

Automatic differentiation (AD) [21], also known as Algorithmic Differentiation,
solves many problems with symbolic and numerical differentiation. It can auto-
matically provide derivatives, high-order derivatives, and partial derivatives with
respect to many input parameter functions defined in computer source code [12].
AD approaches typically use a computational graph that is traversed to compute
the root node derivative by aggregating the partial derivatives along all paths to
leaf nodes, applying the chain rule for every edge weight [4].

The past few years have seen a growing interest in AD from both academia
and industry, fueled by a need for generic, user-friendly deep learning toolkits.
The backpropagation learning algorithm used to train deep neural networks is a
special case of reverse mode AD [24]. Consequently, several libraries available for
deep learning also include high performance routines for AD [3,27]. TensorFlow
[1] is a Python based deep learning API provided by Google implemented with a
GPU backend. In this paper, we extend our previous use of Tensorflow for solving
inverse problems [18] to automatically calculate gradients for the NURBS fitting
forward model and error metric previously defined in Equation 2.

3.2 Evaluation

In this section we present a comparison of three different methods for fitting
an MFA NURBS model: Xie’12 [28], Ma&Kruth’95 [16], and AD [21]. B-spline
(unweighted) fitting is also included in the evaluation to assess the benefit of
solving for control point weights. Throughout the experiments presented within
this paper, we use one synthetic dataset, and one scientific dataset generated
from a production HPC simulation code.

Datasets For the synthetic data we use the sinc cardinal sine function of the
form y = sin(x)/x, that we can generate in any dimensionality and resolution.
In order to increase the range and slope of the data, we scaled the sinc function
by a factor of 10. The 1D sinc function is f(x) = 10sin(x)/x. In 2D, f(x, y) =
10sinc(x)sinc(y), and so forth for higher dimensions. The sinc function was
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Fig. 2. Rational approximation accuracy plots with increasing control point number.
Left plot, synthetic data (sinc). Right plot, combustion simulation data (S3D).

chosen for its smoothness; because of its high degree of continuity, the MFA is
able to model such data efficiently. In contrast to the sinc data, S3D is a turbulent
combustion data set generated by an S3D simulation [6] of fuel jet combustion in
the presence of an external cross-flow [13]. This dataset is non-smooth, with sharp
edges and high-frequency details, and is representative of actual data one would
encounter in scientific experiments or simulations. The domain is 3D (x, y, z)
(704× 540× 550), and the range variable f(x, y, z) is the magnitude of the 3D
velocity vector at each domain point. We slice this dataset to produce 1D and
2D cross-sections.

Experiment and Results We ran the four fitting algorithms with sinc, gen-
erated for 1D input curve (m = 1000), and S3D 1D curve sliced in the X-axis
(m = 704). The experiments were performed by varying the number of control
points from the minimum number (n = p+ 1) to half the input points (n = m/2).
For all runs, we use quartic curve fitting (p = 4), and the L-BFGS-B optimizer [5]
for the gradients provided by the Xie’12 and AD methods, for which the weights
bounds were set within the range [10−4, 1] to keep the weights positive. The plots
in Figure 2 report the accuracy of the fitting as defined by the SSE metric in
log-log scale.

The left plot shows that all methods perform well on the smooth synthetic
input, with rational algorithms generally providing superior approximations,
when the ratio of input points to control points, (m/n), is higher; this directly
translates to better compression factors. The reason AD accuracy stagnates
around SSE = 10−13 is because it is running on the GPU and using single-
precision (32-bit format), while the other methods are using double-precision
(64-bit). S3D results, shown in the right plot of Figure 2, favor iterative gradient-
based methods (Xie’12 and AD) over explicit methods (Ma&Kruth’95 and
Unweighted) when dealing with nonsmooth real input data.
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4 Rational Adaptivity

Next we turn to extending our B-spline adaptive algorithm [19] to NURBS;
solving for control point weights in addition to their locations. Adaptivity is
achieved through increasing knot resolution where an error metric is above a
given error bound ε, which, in turn, leads to additional control points in this
underrepresented region. Here we use Normalized Squared Error (NSE) as the
error metric used for adaptivity, but other metrics can similarly be used depending
on the scientific application. We implemented two variants of this approach: one
that splits all the knot spans where the user-set error bound is violated, termed
wga for weighted global all; the other approach splits one knot span at each
adaptive iteration, termed wg1 for weighted global one. The two variants of our
rational adaptive method are presented in Algorithm 1.

Algorithm 1 Global adaptive encoding algorithm
1: function GlobalAdaptive(I, T, ε, splitAll)
2: do
3: R← basis(T )
4: P,w ← RationalEncode(I, R)
5: E ← Decode(P,w,R)− I
6: NSE ← E2/(max(I)−min(I))
7: toSplit← findKnots(NSE, T, ε, splitAll)
8: Tnew ← ∅
9: for all ti ∈ T do

10: Tnew = Tnew
⋃
ti

11: if i ∈ toSplit then
12: Tnew = Tnew

⋃
{ti + ((ti+1 − ti)/2)}

13: T = Tnew

14: while toSplit 6= ∅
15: return P,w, T

16: function findKnots(NSE, T, ε, splitAll)
17: if splitAll then
18: return {where(NSE > ε, T )} . returns indices in T where NSE > ε
19: else
20: maxNSE ← max(NSE)
21: if maxNSE > ε then
22: return {where(NSE = maxNSE, T )} . returns the index of maxNSE in T
23: else
24: return ∅

The algorithm starts with an initial knot distribution stored in T , then, using
one of the methods presented in Section 3, computes a rational encoding, for
input field I, in terms of control point locations and weights, P and w. To
compute the encoded model accuracy we perform a global decode operation, as
specified by Equation 1, and compare the decoded model to the input field. From
the calculated error field E, the locations of errors above the error bound ε are
mapped to knot values in T , and their associated knot spans are split in the
middle. This process is repeated until there are no more knot spans to split, which
is either due to E being below ε everywhere in the input domain, or not enough
input points within the spans to be split. The latter scenario means a rational
polynomial of degree p is not sufficient to model the discrete input points within
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the given knot spacing, with the desired error bound ε. Remedies to this problem
include modifying the overall NURBS degree used for fitting, the use of domain
decomposition techniques to assign different degrees to different subdomains, or
a hierarchy of different subdomains with varying spline properties at each level of
the hierarchy [11]. In this paper, we leave the investigation into NURBS degree
and initial conditions for future work. Therefore, the rational adaptive methods,
as presented here, might not converge for certain inputs.

4.1 Local Rational Adaptivity

The global adaptive algorithm presented in the previous subsection is computa-
tionally inefficient for two main reasons: 1) it includes a global encode and decode
at the beginning of every adaptive iteration, and 2) the global rational encode
procedure, in Algorithm 1 line 3, ignores the results of the previous iteration,
starting from scratch over the whole domain of input points. To address these
shortcomings, we develop a local adaptive algorithm that is able to incrementally
refine a rational model. The algorithm steps are listed in Algorithm 2, and
highlighted in Figure 5.

Algorithm 2 Local adaptive encoding algorithm
1: function LocalAdaptive(I, T, ε, p, n,m)
2: R← basis(T )
3: P,w ← RationalEncode(I, R)
4: E ← Decode(P,w,R)− I
5: NSE ← E2/(max(I)−min(I))
6: while mean(NSE) > ε do
7: toSplit← findKnots(NSE, T, ε, False)
8: Tnew, P, w, pStart, pEnd← knotInsertion(toSplit, T, P, w)
9: R← basis(Tnew)

10: localStart← max(pStart− p, 1) . expand the local domain to include constraints
11: localEnd← min(pEnd+ p, n)
12: Rlocal ← R[localStart : localEnd] . extract local basis from R
13: Ilocal ← I[where(Rlocal > 0, I)] . extract local input points from I
14: Plocal, wlocal ← LocalRationalEncode(Ilocal, Rlocal, p) . local solve with p constraints
15: Elocal ← Decode(Plocal, wlocal, Rlocal)− Ilocal

16: P [localStart : localEnd]← Plocal . update control point locations
17: w[localStart : localEnd]← wlocal . update control point weights
18: NSE[where(Rlocal > 0, NSE)]← E2

local/(max(I)−min(I)) . update error
19: T = Tnew

20: return P,w, T

Our local adaptive method, wl1, relies on two important modifications to
Algorithm 1 to address its shortcomings. The global rational encode and decode
procedures are replaced with their local counterparts; acting on subdomains of I,
R, P , and w. In particular, the rational encode optimization problem is amended
to include boundary equality constraints, in order to preserve p-continuity at the
local subdomain edges [11] (see Figure 5, bottom row). The other modification
incorporates the standard knot insertion algorithm [20] instead of a global encode
after splitting a knot span. Standard knot insertion is an algorithm similar to
DeCasteljau’s method for subdividing Bézier curves [10] in that it adds one knot,
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and in turn one control point, to a spline model without changing the shape of
the decoded curve. For a 1D curve, this is achieved by removing p− 1 control
points, belonging to the knot to be split, and calculating positions for p new
control points explicitly using a triangular recursion scheme. In the case of 2D
surfaces, p− 1 control point rows and columns are removed, and p control point
rows and columns are added as depicted in Figure 5.

4.2 Evaluation

We compare the three variants of our rational adaptive encoding algorithms (wga,
wg1, wl1) with their unweighted counterparts (ga, g1, l1), with varying error
bounds, in terms of compression factors (m/n), and total runtime. In order to
provide a fair walltime comparison, we unify the encoding procedures to use AD
for all the six methods, coupled with a Sequential Least Squares Programming
(SLSQP) optimizer [14] that is able to handle constrained nonlinear optimization
problems. This approach highlights the flexibility of our AD method for solving
either nonlinear problems with constraints, without constraints, or the linear
problem of determining just control point locations given their weights, with
minimal changes to the underlying forward model, and without needing to change
the derivative calculations.

Experiments and Results First, we provide an evaluation for the 1D sinc,
and S3D datasets with the same parameters as presented in Section 3. For
initial conditions for the adaptive algorithms, we use p = 4, and n = p + 1.
The plots in Figure 3 report the different methods compression factors and run
times in log-log scale. The results in Figure 3 further reinforce our finding of
rational approximations generally outperforming their equivalent unweighted
models, i.e. NURBS are better than B-splines. It is also not surprising that
the variants of our adaptive algorithm that split one knot span at a time (wg1,
wl1) mostly provide better compression factors (fewer control points), than the
variants that split all knot spans that violate the error bound. In fact, the flat
portions of wga and ga lines signify these methods ‘overshooting,’ or splitting
more knots than needed. In terms of run time, the rational local method is the
worst performing among all the tested methods. This is attributed to the overhead
needed for solving the constrained optimization problem which seems to outweigh
the benefits gained from a local solve. Moreover, since all methods start from the
minimum number of control points, the local method, which refines the decoded
curve from previous iterations, does not fare well compared to methods that
recompute the whole model at every iterations. In order to support these claims,
we conduct an experiment where we compare the rational adaptive methods with
increasing number of input points. The plots in Figure 4 show the performance
of our rational adaptive algorithms on the S3D 1D curve resampled at different
domain spacings, employing cubic spline interpolation, ε = 10−4, and n = 50
initial control points distributed uniformly along the resampled input domain.
It is worth noting, this initial number of control points was chosen arbitrarily
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Fig. 3. Adaptive algorithms comparison with varying error bounds. Solid lines are used
for the rational methods, while unweighted methods are depicted with dashed lines.

without any manual tuning. From the plots in Figure 4, we can see that wg1
run time starts scaling exponentially at 20k points. As the number of input
points increases, while the number of initial control points is kept constant, wg1
requires more iterations to reach the desired fitting accuracy. Since each iteration
contains global rational encode and decode operations, wg1 iterations eventually
become more expensive than wl1 iterations, which are composed of constrained
local rational encode and decode operations.
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curve/surface. Second step: (bottom row) perform a local rational encode for the new
control points (black circles) with equality constraints for p boundary control points
(red circles). Repeat for next highest error location.
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Second, we compare the six adaptive encoding methods on a 2D slice of the
S3D dataset, using AD for encoding, SLSQP as the optimization algorithm, p = 4,
and n = {10, 10}. These tests show all the methods presented in this paper are
directly generalizable to high dimensions, and are able to model real scientific
inputs (see Figure 6). The results are presented in Table 1, and are consistent
with the results reported for 1D datasets, with the exception of high run time of
the wga and ga methods. This is due to the global encoding complexity scaling
with the number of control points.

Table 1. 2D S3D Dataset w/ 2.3× 104 Input Points, Desired ε = 0.1

Methods Output Ctrl Pts Cmpr Fctr Actual SSE Actual NMSE Actual max(E) Time (s)

wga 2.1× 103 10.8 4.1× 105 5.2× 10−2 3.0× 10−1 31899
ga 2.1× 103 10.8 7.2× 105 9.1× 10−2 4.0× 10−1 700

wg1 3.6× 102 65.8 9.4× 105 1.1× 10−1 3.1× 10−1 233
g1 4.0× 102 59.4 1.1× 106 1.4× 10−1 3.2× 10−1 34
wl1 6.2× 102 38.0 7.5× 105 9.4× 10−2 2.9× 10−1 559
l1 6.2× 102 38.0 9.5× 105 1.2× 10−1 3.2× 10−1 129

The results of a sample run of our local adaptive algorithm on S3D is shown
in Figure 6. The encoded model is able to capture rapid changes in the input
field by increasing knot and control point resolution in high turbulence regions.

Decoded
Control
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Fig. 6. A visualization of a decoded model for S3D 2D slice. Left, the decoded surface
colored by error magnitude, with the control mesh (black) offset upwards for clarity.
Right, the decoded surface projected on a 2D image, with the knot locations grid
depicted as dotted lines.

The main limitation of the methods presented here, which stems from adopting
the standard NURBS model, is their reliance on tensor products of basis function
for each domain dimension. While this leads to added cost in terms of extra
memory/computation, generally, it results in calculations that can be very easily
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vectorized. Furthermore, the approximation accuracy should benefit from the
overall increased degrees of freedom. The implication of the tensor product
formulation for adaptive algorithms is that it requires additional hyper planes of
control points in every domain dimension when splitting just one knot span. We
are currently working on a T-Splines [2] extension to our work that is compatible
with the local adaptive algorithm presented here. The T-Spline formulation
will restrict the added control points to the edges of the local region being
refined. We are also investigating hybrid local refinement techniques, in which
multiple subdomains can be solved in parallel as long as they do not overlap in
the unconstrained control points. Additionally, since the quality of the model
depends on the nature of the input dataset, we are researching methods for
determining initial conditions (parameterization function, knot spacing, number
of control points, fitting degree) based on properties of the input data.

5 Conclusion

This paper is primarily concerned with rational approximations, which we show
to fit input data more precisely and compactly compared to unweighted ones.
Here, we solve a nonlinear problem of finding NURBS optimal control point
locations and their associated weights that accurately approximate given input
points to user-set error bounds. Additionally, by taking advantage of the local
support property of NURBS, we developed an algorithm that is able to locally
refine a given approximation on a subset of the input domain. This effectively
reduces the computational burden by restricting the iterative gradient-based
optimization locally in subdomains of both the approximation and the input
domains, and naturally lends the algorithm to a parallel implementation [25].
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