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Abstract. A coupled LBGK scheme, constituting of two independent distribu-
tion functions describing velocity and temperature respectively, is established in 
this paper. Chapman-Enskog expansion, a procedure to prove the consistency of 
this mesoscopic method with macroscopic conservation laws, is also conducted 
for both lattice scheme of velocity and temperature, as well as a simple intro-
duction on the common used DnQb model. An efficient coding manner for 
Matlab is proposed in this paper, which improves the coding and calculation ef-
ficiency at the same time.  The compact and efficient scheme is then applied in 
the simulation of the famous and well-studied Rayleigh-Benard convection, 
which is common seen as a representative heat convection problem in modern 
industries. The results are interesting and reasonable, and meet the experimental 
data well. The stability of this scheme is also proved through different cases 
with a large range of Rayleigh number, until 2 million.  
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1 Introduction 

LBM, short for Lattice Boltzmann Method, is a numerical approach to simulate fluid 
flows in mesoscopic level, which is quite popular at present and has been applied to 
varieties of extensions [1-8]. One main reason of its popularity is the introduction of 
distribution function, which allows this method to avoid solving directly the common 
non-linear hydrodynamic equations, e.g. Navier-Stokes equations. The hydraulic flow 
is modeled by distribution function evolutions, constituted by two stages—collision 
and streaming process. These two stages represent the general microscopic fluid par-
ticles, but not directly model the molecular dynamics. LBM scheme is famous for 
some feathers, like the natural full parallelism and easy coding, which makes it en-
hanced and improved from many other classical CFD methods. In the past two dec-
ades, plenty of works have been contributed to this area [9,10], and great success has 
been obtained in many subsections, including single phase or multiphase flow, iso-
thermal or non-isothermal flow and flow in single tube or porous media .  

In original LBM scheme, only mass and momentum conservations are considered, 
thus it is only applied in isothermal problems. However, as many applications require 
the investigation of temperature field, it is sometimes important to take the thermal 
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effect into the consideration of fluid flows. For example, in reservoir simulation, 
phase composition and thermodynamic properties are common needed, which should 
be calculated under certain temperature evolution. To handle the thermal fluid flows, 
several models have been developed and the past two decades have seen remarkable 
progress in this development, with three major classification: the multi-speed (MS) 
approach [3,4], the coupled LBGK (CLBGK) approach and multi-distribution func-
tion (MDF) [5,6] approach. The MS approach is limited in a very narrow range of 
temperature variation, due to its simplicity of distribution function application. It is 
just a simple and trival extension of the classical isothermal LBGK models, and the 
thermal effect is only represented by some additional discrete velocities included in 
the distribution functions. The macroscopic energy conservation is generally reserved 
by adding higher order velocity terms in the energy distributions. As a result, there is 
always a severe numerical instability in such models.  

To overcome the limitations of both severe instability and narrow temperature 
range, the MDF model was proposed. With the assumption that pressure effect has 
been ignored on the heat dissipation and compression process, the fluid flow is the 
main reason of temperature filed advection and a simpler passive-scaler formula is 
applied. Compared with MS model, an independent distribution function is introduced 
in MDF model, which could be computed with LBGK scheme as well. Both the nu-
merical stability and temperature range are improved in MDF model. In the mean-
time, some disadvantages have been found in this scheme. At present, the Mach num-
ber of the flow is restricted to be very slow in MDF model, and the density ratio is 
assumed to be in a very short range to keep the scheme stable. Besides, these disad-
vantages are more serious for a turbulent flow, and in such cases some undesired un-
physical phenomena may be produced due to the artificial compressibility introduced.  

As the recent developments in MDF model have noticed these limitations, some ef-
forts have been made to eliminate such errors. An improved LBGK scheme is pro-
posed to numerically scheme the flow models in steady and unsteady flow conditions. 
This scheme is further extended in [3] to simulate thermal fluid flows. An additional 
LBGK equation is introduced and then incorporated with the classical distribution 
function based on the Boussinesq assumption. This model is called ‘coupled LBGK’, 
known as CLBGK. As the multiple distribution functions are applied here, this 
scheme is similar to MDF, but the lattice in CLBGK used for temperature field can be 
different compared to that used for velocity field. As a result, this coupling scheme is 
more flexible and proved to be more numerical efficient.  

This paper is organized as follows. First, we introduce the mathematical scheme of 
the LBGK model as well as the Chapman-Enskog expansion in section 2. The cou-
pling of temperature and velocity is performed in details in section 3. A complex 
thermal fluid flow phenomena, Rayleigh-Benard heat transfer is simulated in section 
4, and results of different Reyleigh number are considered and compared. Finally, in 
section 5, we make some discussions and conclusions.  
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2 LBGK equations 

The LBM numerical method is first developed from the Lattice Gas Automata (LGA), 
which models the microscopic molecular dynamics of gases. During its development, 
it is founded that it can be derived from original Boltzman equation as well using 
some discretizations. As a result, LBM is viewed as a special treatment of Boltzmann 
equation, as well as a mesoscopic model itself. Due to the avoid of solving traditional 
CFD equations, e.g. NS equations, Lattice Boltzmann Method is often referred as a 
popular method with easy implementation and coding.  

 
2.1 DnQb LBGK model 

The starting point is the BGK approximation used at Boltzmann equation,  

 !"# + % ∙ ∇(# = Ω # = - ,- # ., %, 0 -#12 ., %, 0   , (1) 

where ! ", $, %    is the particle distribution function with x representing space and 
velocity is symbolled as !  , which means that the number of particles at time step t, in 
an area centered at x, with a radius of dx, and velocity varying from !   to ! + #!  . !   is 
called relaxation time and 

!
"   represents the collision frequency. The superscript ‘eq’ 

means the distribution function has been evolved to the equilibrium state. Macroscop-
ic properties, including density, velocity and internal energy can be obtained through 
following equations from distribution functions: 

 ρ = #$%, '( = %#$%, ') = %-( +#$%  , (2) 

where total energy E can be derived from E = ρe + &
' ()

'  . At equilibrium state, the 
distribution function reaches a Maxwellian equation: 

 !"# = %
&'() */, -./ - 1-2 ,

&()   , (3) 

where ! = #$/&   is the gas constant with !"   the Boltzmann constant and !   the mo-
lecular mass. D is the space dimension. Using Taylor expansion, the continuous dis-
tribution function at equilibrium state can be written in terms of the fluid velocity, 

 !"# = %
&'() */, -./ - 1,

&() 1 + 1∙5
() +

1∙5 ,

& () , -
5,
&() + 6 78    (4) 

The velocity space of !   is then discretized into a finite set of velocities !"  , and to 
keep the conservation laws, the following quadratures of the expanded equilibrium 
distribution function should hold exactly, 

 !"#$% &, (), * +! = -)()"#$% &, (), *)   , (5) 
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where !"   are the weights and !"   are the points of the numerical quadrature rule. Based 
on the formulation, the standard LBGK equation can be derived as 

 !" # + %"&', ' + &' -!" #, ' = - +, !" #, ' -!"-. #, '    (6) 

The LBGK models are the most popular LB method and have been widely applied in 
variety of complex flows. Among the available models, the group of DnQb (n-
dimensional and b-velocities) models proposed by Qian et al. are the most representa-
tive ones []. In DnQb models, the discrete equilibrium distribution function can be 
expressed as 

 !"#$ = ρ'" 1 + *#+∙-
*./

+ --∶ */#+#+-*./2
/

3*.4
   (7) 

The common value used in different DnQb models are listed in Table 1, 

Table 1. Parameters of some DnQb models. 

Model Lattice vector !"    Weight !"    
D1Q3 0,±1  

2
3 ,
1
6 

 
D2Q9 0,0 , ±1,0 , 0, ±1 , ±1,±1   

4
9 ,
1
9 ,

1
36 

 

D3Q15 
000   
±1,0,0 , 0, ±1,0 , 0,0, ±1   
±1,±1,0 , ±1,0, ±1 , 0, ±1,±1   

1
3 ,

1
18 ,

1
36 

 

 

2.2 Multiscale Chapman-Enskog expansion 

Navier-Stokes equations are common used in computational fluid dynamics, as it can 
well describe the macroscopic fluid behavior. The Lattice Boltzmann Method focuses 
on the particle distribution function in a mesoscopic level, higher than the microscop-
ic but less visible than the macroscopic. So it’s a necessary step to derive the macro-
scopic N-S equations from the proposed LB equation formulas, to show the robust-
ness and reliability of our scheme. Such derivation is often processed with the Chap-
man-Enskog method and it’s presented in this paper as well. In the following part, the 
D2Q9, which is the most popular DnQb model at present, is selected as an example to 
show the detailed Chapman-Enskog expansion process. By defining the expression of 
physical properties at different time and space level, the macroscopic variables are 
automatically separated into the corresponding different scales. 

With the basic knowledge of lattice tensor, it is easy to get 

 !"#"$% = !"#" = '(""    (8) 

and for 2nd order, 
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 !"!"#"$% = !'()* + ),,"   , (9) 

for 3rd order, 

 !"!"!"#"$% = !'()∆ ∙ ,"    (10) 

The distribution function can be expanded in terms of ε   as 

 !" = !" $ + &!" ' + &(!" ( + ⋯   (11) 

Generally, the time t   and space x are scaled as 

 x = #$%&, (% = #(, () = #)(  , (12) 

in which, !"   represents the fast convective scale, while !"   describes the slow diffusive 
scale. The above multiscale representation induces a corresponding representation of 
the differential operators: 

 
!
!" = $ !

!"%
+ $' !

!"(
, ∇= $∇+   (13) 

Substituting Equation (10) and (12) into Equation (13), we can have 

 

!"#$ + !&"#& + !'( ∙ ∇$ +( , + !+( $ + !&+( & + ⋯ + ./
& !"#$ + !&"#& + !'( ∙

∇$ & +( , + !+( $ + !&+( & + ⋯ = - $
2./ +( , -+( 34 + !+( $ + !&+( & + ⋯   

 (14) 

Equating the coefficients of each order of !  , it is easy to obtain that: 

 O "# : %& # = %& ()    (15) 

 O "# : %&# + () ∙ ∇# ,) - = - #
012 ,)

#    (16) 

Furthermore, from Equation (14), (15) and (16), the equation at level !"   can be 
written as  

 O "# : %&#'( )* + %&, + -( ∙ ∇, 1 − ,
#2 '( , = - ,

256 '(
#    (17) 

Take summation over i, it is easy to obtain that  

 O "# : %&#' + ∇# '* = 0   (18) 
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 O "# : %&#' = 0   (19) 

Thus, the macroscopic mass conservation equation can be derived as 

 !"# + ∇ ∙ #' = 0   (20) 

On the other hand, the equation at 1st and 2nd level can be also written as 

 O "# : %&# + () ∙ ∇# ,) -. = - #
123 ,)

#    (21) 

 O "# : %&#'( = ∇+ ∙ -' ∇+( + ∇+( /   , (22) 

where ν = #$% &- (% )*  . Combining the two scales, it is soon to get the macroscopic 
momentum conservation equation as  

 !" #$ + ∇ ∙ #$$ = -∇* + ∇ ∙ +# ∇,$ + ∇,$ -    (23) 

3 Compact CLBGK model 

It is a common knowledge that the temperature field is passively driven by the flu-
id flow with advection and a simple advection type equation is enough to model the 
heat transfer if the viscous heat dissipation and compression work carried out by the 
pressure are neglected. Thus, it is quite easy to discretize the temperature equation 
into LBGK model. Meanwhile, as the temperature and velocity field use two inde-
pendent lattice systems, the implementation and coding can be greatly simplified.  
3.1 Lattice BGK equation for temperature field 

The general heat transfer equation could be written as 

 !"
!# + ∇ ∙ '( = *∇+(  , (24) 

where !   is the heat diffusivity. The lattice BGK equation similar as the velocity mod-
eling introduce in previous section can be formed as well for temperature: 

 !" # + %"&', ' + &' -!" #, ' = - +,' !" #, ' -!"
./ #, '   , (25) 

where !'   is the dimensionless relaxation time, and it could be not the same as the !   in 
velocity LBGK equation. As the independent distribution function of temperature, the 
simplest D2Q5 model is applicable here. The temperature distribution function at 
equilibrium state is given by  
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 !" #$ = &
' 1 + 2 #+∙-.   , (26) 

and the macroscopic temperature is the summation of temperature distribution func-
tion in all 5 directions: 

 ! = !#$
#%&    (27) 

The Chapman-Enskog procedure, a multi-scaling expansion technique to derive 
macroscopic conservation equations from mesoscopic LBGK equations is shortly 
introduced for the temperature field here: 

Similar with Equation (11), the temperature is Taylor expanded as 

 !" = !" $ + &!" ' + &(!" ( + ⋯  , (28) 

where !" # = !" %&   , and !   is a small parameter proportional to the Knudsen number. 
Two mesoscopic time scales !" = $!   and !" = $%!   and a macroscopic length scale 
!" = $!   are introduced, thus 

 
!
!" = $ !

!"%
+ $' !

!"(
, ∇= $∇+  , (29) 

which is the same as Equation (13). Through a Taylor expansion in time and space, 
the lattice BGK equation can be written in continuous form as 

 !"#" + ∆&
' !"

'#" + ( ∆) ' = - ,
-'∆& #"-#" /   , (30) 

where !" = $
$% + '(" ∙ ∇   . Substituting Equation (29) into (30), collecting the terms 

of order !   and !"   respectively, and taking summations of the equations into two scales 
over i, we can get: 

 
!"
!#$

+ ∇' ∙ )* = 0   (31) 

 !"
!#$

+ 1 − (
)*' ∇( ∙ Π

( = 0  , (32) 

where Π " = $%&'& "(
&)"   . Combining the two levels, it is easy to obtain the follow-

ing temperature equation as 

 !"
!# + ∇ ∙ '( = *∇+(  , (33) 

to the O ∆#$    order and the diffusivity !   is determined by 
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 ! = #$'&'
(

∆*+
∆,    (34) 

3.2 The coupled lattice BGK model using Boussinesq approximation 

The Boussinesq approximation is common seen in the study of natural convection 
problems, and it’s still popular after so many years’ development due to the simple 
treatment of temperature effect on fluid flow. Thus, it is a good method for us to cou-
ple temperature and velocity distribution functions. It is assumed common properties 
cared in fluid flow, including thermal diffusivity, density and viscosity can be treated 
as a constant, while the temperature effect is only reflected in the body force term. 
The macroscopic Boussinesq equations can be written as the following form: 

 ∇ ∙ # = 0   (35) 

 !"
!# + ∇ ∙ '' = -∇* + +∇,'--. /-/0    (36) 

 !"
!# + ∇ ∙ '( = *∇+(   (37) 

The coupled LBGK equations in previous section can be used here, and the cou-
pling is established by adding the following term to the right-hand-side of the evolu-
tion equation as: 

 !" = - %&' ∆)*"+" ∙ gβ /-/0    (38) 

3.3 The efficient coding in Matlab 

Previously, LBM is often coded in language Fortran and C, due to the long history 
and fully developed coding technique in these two. As there are always plenty of iter-
ations in LBM numerical implementations, high-level language, like Matlab, some-
times performs a relatively slow calculation efficiency. To the writer’s opinion, the 
main advantage of language Matlab falls on the sufficient high-level functions includ-
ed in its library, which benefit a lot in the equation solving and result visualization. 
Thus, we try to utilize the packaged function in Matlab to speed up the solving of 
LBM as: 

for i = 2:9 
N(:,i) = reshape(circshift(reshape 
(N(:,i),nx,ny),[cx(i),cy(i)]),nx*ny,1); %streaming 
end 
 

The above codes represent the streaming process. Using the function ‘circshift’, 
codes are simplified a lot, compared with a common coding style as a ‘traditional 
Fortran manner’: 
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temp=F(:,2);F(:,2)=F(siteNeighbor(:,6),6);F(siteNeighbor(:,6),6)=temp; 
temp=F(:,3);F(:,3)=F(siteNeighbor(:,7),7);F(siteNeighbor(:,7),7)=temp; 
temp=F(:,4);F(:,4)=F(siteNeighbor(:,8),8);F(siteNeighbor(:,8),8)=temp; 
temp=F(:,5);F(:,5)=F(siteNeighbor(:,9),9);F(siteNeighbor(:,9),9)=temp; 

  It is easy to find that the improved coding technique will greatly shorten the codes 
as well as the CPU time used. In all, the best coding is the codes fit best the features 
of language.  

4 Numerical cases 

Rayleigh–Bénard convection is one of the most commonly studied heat transfer phe-
nomena due to its well-researched analytical and experimental results. [11-15] Appli-
cations of R-B type natural convection can be found in many areas, including: the 
atmosphere and ocean convection on the weather and climate on earth; mantle con-
vection on the plate movement and volcanic formation; nuclear convection to produce 
the earth's magnetic field; the sun and other stars in the convection heat from the stars 
inside to the surface; engineering applications convection in heat transfer and heat 
dissipation; convection in crystal growth and metal preparation; convection in ther-
monuclear reactor and so on..  A general Rayleigh-Benard convection problem can be 
set as: In a closed convection cell filled with convection medium, the lower guide 
plate is heated, the upper guide plate is cooled, and the temperature at upper and low-
er guide plates varies with a constant value. When temperature difference is large 
enough, the fluid in the cell will exhibit a very complicated random movement pat-
tern, and form turbulent convection. For the fully developed turbulent convection 
system, there is a very thin temperature boundary layer near the upper and lower 
guide plates in the convection tank, and hot and cold plumes are generated and sepa-
rated from the upper and lower temperature boundary layers respectively.  
4.1 Results of different Ra number 

Some important dimensionless number are often used in the establishing and model-
ing of these convection problems, including Prandtl number (Pr), Rayleigh number 
(Ra) and Grashof number (Gr). A short introduction is provided as follows to help 
understand: Grashof number is a dimensionless parameter often applied to approxi-
mate the correlation ratio of viscous force and buoyancy effecting the thermal flow. 
Prandtl number is defined to approximate the correlation effect of thermal diffusivity 
and momentum diffusivity. Rayleigh number is a dimensionless parameter often used 
in free convection and natural convection, or sometimes attributed as buoyancy-
driven fluid flow. When the Rayleigh number is high enough, heat transfer is always 
treated as mainly driven by convection, but not conduction. At present, heat convec-
tion at high Ra number is of much focus.  

For Ra number varying of 5000 and 20000, temperature field and velocity field at 
steady state are shown as Fig. 1 to 2: 
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(a)                                                                    (b)  

Fig. 1. Temperature field at Ra number equaling (a) 5000 and (b)20000 

 
(a)                                                                    (b)  

Fig. 2. Velocity field at Ra number equaling (a) 5000 and (b)20000 

From the above two figures, it can be referred that a turbulent flow is driven by 
temperature difference on two walls and the result is different with Ra numbers.  

In the study of circumfluence, the relation of Reynolds number (Re) and Rayleigh 
Number (Ra) is of special interest. Generally, a positive correlation is assumed, which 
indicates that a more complex turbulent flow will occur for a larger Ra case. Thus, we 
expect more intense flow at the steady state driven by the temperature difference in 
simulation of higher Ra number. Here, a 200000 case is taken as example: 
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Fig. 3. Temperature and velocity field at Ra number equaling 200000 

A different result is shown in Fig. 3 and it is obvious that more complex circumflu-
ence flows occur in the higher Ra situation, with overall higher velocity (seen in color 
bar).  It is a common knowledge that numerical simulation will perform worse for 
high Re number cases, thus it is always a manner to test the scheme stability. As the 
positive correlation of Ra and Re number, a Ra equaling 2 million case is performed 
using our scheme, and we can still get reasonable results: 

 

  
Fig. 4. Temperature and velocity field at Ra number equaling 2000000 

4.2 Correlation between Nu and Ra 

In heat transfer problems, the Nusselt number (Nu) is the ratio of convective to con-
ductive heat transfer across (normal to) the boundary. The calculation of Nu number 
is always calculated by the following equation in the present R-B simulation: 

 Nu = 1 + &'∙)
*∙∆,/.   (39) 

It is found in previous experimental and numerical investigations that the Nusselt 
number in Rayleigh–Benard convection can always be represented by a power law: 
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Nu ∝ $%&  , in which the power value r varies slightly around 0.282[11,12]. In this 
paper, we also calculate the correlation of Nu and Ra to validate our simulation: 

 
Fig. 5. Correlation of Nu and Ra 

As shown in Fig. 5, our simulation results meet well with the empirical data, thus 
our scheme is validated. Besides, it can be seen that there is slight difference when 
Ra ≤ 10&   and Ra ≫ 10&  . It can be attributed that such power law is only validated 
near the turbulence regime, while large Ra will result in large velocity, thus large 
Mach number will be obtained. However, the stability of LBM scheme is limited in a 
low Mach condition. Anyway, the robustness of our scheme is proved here as the case 
with Ra number as high as 2 million can be handled well with acceptable results.  

The convergence of Nu number is also a test to show the scheme efficiency. Con-
verging process of Nu number at two cases of Ra numbers equaling 5000, 20000, 
200000 and 2000000 are shown here: 

                
(a)Ra=5000                                                       (b)Ra=20000 
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(c)Ra=200000                                                     (d)Ra=2000000 

Fig. 6. Nu convergence process of different Ra number 

It can be seen in Fig. 6 that with the arising of Ra numbers, it will take more time 
for the Nu number to converge to the steady value. It is reasonable due to the more 
complex turbulence occurred in a higher Ra number condition. The efficiency of our 
scheme is validated as in low Ra numbers, it is very fast to see the convergence of Nu 
number and the iteration steps needed in high Ra number are still acceptable. Howev-
er, in the case of Ra equaling 2000000, it is very hard to get a steady Nu value, alt-
hough we could see the obvious convergence trend, which could be attributed that the 
high Re number resulted from high Ra number is still a high challenging of LBM 
scheme. For CPU time, only 62.79s is needed for Ra=5000 while the Ra=2000000 
case costs more than 200s to convergence.  

5 Conclusion  

Complex thermal fluid flows are common seen in modern industry, thus it is very 
meaningful to find an efficient manner to simulate such phenomena. A compact 
LBGK scheme is generated in this paper, with the coupling of temperature and veloci-
ty distribution functions using Boussinesq approximation. As the two distribution 
functions are independent to each other, we could treat them in two different lattice 
systems. In this paper, the D2Q5 model is selected for the temperature field evolution 
while the D2Q9 model is chosen for velocity distribution function. This treatment will 
obviously accelerate our simulation. Combined with a more efficient coding style, we 
can simulate the complex Rayleigh-Benard convection problems under different Ray-
leigh numbers. The robustness of our scheme is validated through the acceptable re-
sults obtained at very high Ra number, 2 million. The Nusselt number calculated for 
different Ra number meet well with the empirical data and the convergence process of 
Nu is also acceptable and reasonable. The increasing iterations and CPU time needed 
to get the steady state meet well the arising of Ra numbers.  

As this scheme is validated and proved to be compact and efficient, it is a good lat-
tice system based on which we can implement other thermal fluid flows, like the heat-
ed oil transfer and Flash calculation with gradient flows.  

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_12

https://dx.doi.org/10.1007/978-3-319-93713-7_12


14 

References 

1. Lin, Z., Fang, H., & Tao, R. (1996). Improved lattice Boltzmann model for incompressible 
two-dimensional steady flows. Physical Review E, 54(6), 6323. 

2. Yang X, Shi B, Chai Z. Generalized modification in the lattice Bhatnagar-Gross-Krook 
model for incompressible Navier-Stokes equations and convection-diffusion equations. 
Physical Review E. 2014 Jul 28;90(1):013309. 

3. Guo Z, Shi B, Zheng C. A coupled lattice BGK model for the Boussinesq equations. Inter-
national Journal for Numerical Methods in Fluids. 2002 Jun 10;39(4):325-42. 

4. Qian, Y. H., d'Humières, D., & Lallemand, P. (1992). Lattice BGK models for Navier-
Stokes equation. EPL (Europhysics Letters), 17(6), 479. 

5. Qian, Y. H. (1993). Simulating thermohydrodynamics with lattice BGK models. Journal of 
Scientific Computing, 8(3), 231-242. 

6. Alexander, F. J., Chen, S., & Sterling, J. D. (1993). Lattice boltzmann thermohydrodynam-
ics. Physical Review E, 47(4), R2249. 

7. Eggels, J. G. M., & Somers, J. A. (1995). Numerical simulation of free convective flow us-
ing the lattice-Boltzmann scheme. International Journal of Heat and Fluid Flow, 16(5), 
357-364. 

8. Zhang T, Sun S, Yu B. A Fast Algorithm to Simulate Droplet Motions in Oil/Water Two 
Phase Flow. Procedia Computer Science. 2017 Dec 31;108:1953-1962. 

9. M.F. El-Amin, S. Sun, A. Salama, On the Stability of the Finite Difference based Lattice 
Boltzmann Method, Procedia Computer Science, Volume 18, 2013, Pages 2101-2108. 

10. Castaing B, Gunaratne G, Heslot F, et al. Scaling of hard thermal turbulence in Rayleigh-
Benard convection. J. Fluid Mech., 1989, 204: 1-30 

11. Cioni S, Ciliberto S, Sommeria J. Strongly turbulent Rayleigh-Benard convection in mer-
cury: comparison with results at moderate Prandtl number. J. Fluid Mech.,1997, 335: 111-
140 

12. Calzavarini, E., Lohse, D., Toschi, F., & Tripiccione, R. (2005). Rayleigh and Prandtl 
number scaling in the bulk of Rayleigh–Bénard turbulence. Physics of Fluids, 17(5), 
055107. 

13. Silano, G., Sreenivasan, K. R., & Verzicco, R. (2010). Numerical simulations of Rayleigh–
Bénard convection for Prandtl numbers between 10− 1 and 10 4 and Rayleigh numbers be-
tween 10 5 and 10 9. Journal of fluid mechanics, 662, 409-446. 

14. Puthenveettil, B. A., & Arakeri, J. H. (2005). Plume structure in high-Rayleigh-number 
convection. Journal of Fluid Mechanics, 542, 217-249. 

15. Zhou, Q., & Xia, K. Q. (2010). Physical and geometrical properties of thermal plumes in 
turbulent Rayleigh–Bénard convection. New Journal of Physics, 12(7), 075006. 

 
 

 

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_12

https://dx.doi.org/10.1007/978-3-319-93713-7_12

