
An algorithm for tensor product approximation of
three-dimensional material data for implicit dynamics

simulations

Krzysztof Podsiadło, Marcin Łoś, Leszek Siwik, and Maciej Woźniak

AGH University of Science and Technology, Krakow, Poland,
{podsiadlo,los,siwik,wozniak}@agh.edu.pl

Abstract. In the paper, a heuristic algorithm for tensor product approximation
with B-spline basis functions of three-dimensional material data is presented.
The algorithm has an application as a preconditioner for implicit dynamics sim-
ulations of a non-linear flow in heterogeneous media using alternating directions
method. As the simulation use-case, a non-stationary problem of liquid fossil
fuels exploration with hydraulic fracturing is considered. Presented algorithm
allows to approximate the permeability coefficient function as a tensor product
what in turn allows for implicit simulations of the Laplacian term in the partial
differential equation. In the consequence the number of time steps of the non-
stationary problem can be reduced, while the numerical accuracy is preserved.

1 Introduction

The alternating direction solver [1, 2] has been recently applied for numerical simula-
tions of non-linear flow in heterogeneous media using the explicit dynamics [3, 4].

The problem of extraction of liquid fossil fuels with hydraulic fracturing technique
has been considered there. During the simulation two (contradictory) goals i.e., the
maximization of the fuel extraction and the minimization of the ground water contam-
ination have been considered [4, 14]. The numerical simulations considered there are
performed using the explicit dynamics with B-spline basis functions from isogeometric
analysis [5] for approximation of the solution [6, 7]. The resulting computational cost
of a single time step is linear, however the number of time steps is large due to the
Courant-Fredrichs-Lewy (CFL) condition [8]. In other words, the number of time steps
grows along with the mesh dimensions.

Our ultimate goal is to extend our simulator for implicit dynamics case, following
the idea of the implicit dynamics isogeometric solver proposed in [9]. The problem is
that the extension is possible only if the permeability coefficients of the elliptic op-
erator are expressed as the tensor product structure. Thus, we focus on the algorithm
approximating the permeability coefficients with tensor products iteratively.

The algorithm is designed to be a preconditioner for the implicit dynamics solver.
With such the preconditioner the number of time steps of the non-stationary problem
can be reduced, while the numerical accuracy preserved.

Our method presented in this paper is an alternative for other methods available for
approximating coefficients of the model, e.g., adaptive cross approximation [15].

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_12

https://dx.doi.org/10.1007/978-3-319-93701-4_12

2 Explicit and implicit dynamics simulations

Following the model of the non-linear flow in heterogeneous media presented in [1]
we start with our explicit dynamics formulation of the problem of non-linear flow in
heterogeneous media where we seek for the pressure scalar field u:

(
∂u(x,y,z)

∂ t
,υ(x,y,z)

)
=

((
K(x,y,z)eµu(x,y,z)

)
∇u(x,y,z),∇υ(x,y,z)

)
+
(

f (x,y,z),υ(x,y,z)
)
∀υ ∈V

(1)

Here µ stands for the dynamic permeability constant, K(x,y,z) is a given perme-
ability map, and f (x,y,z) represents sinks and sources of the pressure, modeling pumps
and sinks during the exploration process.

The model of non-linear flow in heterogeneous media is called exponential model [12]
and is taken from [10] and [11].

In the model, the permeability consists of two parts, i.e., the static one depending
on the terrain properties, and the dynamic one reflecting the influence of the actual
pressure.

The broad range of the variable known as the saturated hydraulic conductivity along
with the functional forms presented above, confirm the nonlinear behavior of the pro-
cess.

The number of time steps of the resulting explicit dynamics simulations are bounded
by the CFL condition [8], requesting to reduce the time step size when increasing the
mesh size. This is important limitation of the method, and can be overcome by deriving
the implicit dynamics solver.

Following the idea of the implicit dynamics solvers presented in [9], we move the
operator to the left-hand side:(

∂u
∂ t

,υ

)
−
((

K(x,y,z)eµu(x,y,z)
)

∇u,∇υ

)
=
(

f ,υ
)
∀υ ∈V, (2)

where we skip all arguments but the permeability operator.
In order to proceed with the alternating directions solver, the operator on the left-

hand-side needs to be expressed as a tensor product:

(
∂u
∂ t

,υ

)
−
((

K(x)eµu(x)K(y)eµu(y)K(z)eµu(z)
)

∇u,∇υ

)
=(

f ,υ
)
+
(

K(x)K(y)K(z)eµu(x)eµu(y)eµu(z)−K(x,y,z)eµu(x,y,z)
∇u,∇υ

)
∀υ ∈V

(3)

It is possible if we express the static permeability in a tensor product form:

K(x,y,z) = K(x)K(y)K(z) (4)

using our tensor product approximation algorithm described in section 3.
Additionally, we need to replace the dynamic permeability with an arbitrary selected

tensor product representation:

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_12

https://dx.doi.org/10.1007/978-3-319-93701-4_12

u(x,y,z) = u(x)u(y)u(z) (5)

It can be done by adding and subtracting from the left and the right hand sides the
selected tensor product representation.

One simple way to do that is to compute the average values of u along particular
cross-sections, namely using:

u(x,y,z) =
Nx

∑
i=1

(Ny

∑
j=1

(Nz

∑
k=1

(
di jkBi,p(x)B j,p(y)Bk,p(z)

)))
(6)

so we define:

u(x) =
Nx

∑
i=1

uiBi,p(x) (7)

u(y) =
Ny

∑
j=1

u jB j,p(y) (8)

u(z) =
Nz

∑
k=1

ukBk,p(z) (9)

and

ui =
∑

Ny
j=1

(
∑

Nz
k=1(di jk)

)
NyNz

; u j =
∑

Nx
i=1

(
∑

Nx
k=1(di jk)

)
NxNz

; uk =
∑

Nx
i=1

(
∑

Ny
j=1(di jk)

)
NxNy

(10)
In other words, we approximate the static permeability and we replace the dynamic

permeability.
Finally we introduce the time steps, so we deal with the dynamic permeability ex-

plicitly, and with the static permeability implicitly:

(
ut+1,υ

)
−
((

K(x)eµut (x)K(y)eµut (y)K(z)eµut (z)
)

∇ut+1,∇υ

)
=(

f ,υ
)
+
(

K(x)K(y)K(z)eµu(x)eµu(y)eµu(z)−K(x,y,z)eµut (xyz)
∇ut ,∇υ

)
∀υ ∈V

(11)
In the following part of the paper the algorithm for expression of an arbitrary mate-

rial data function as the tensor product of one dimensional functions that can be utilized
in the implicit dynamics simulator is presented.

3 Kronecker product approximation

As an input of our algorithm we take a scalar function defined over the cube shape
three-dimensional domain. We call this function a bitmap, since often the material data
is given in a form of a discrete 3D bitmap.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_12

https://dx.doi.org/10.1007/978-3-319-93701-4_12

First, we approximate this bitmap with B-spline basis functions using fast, linear
computational cost isogeometric L2 projections algorithm.

Bitmap(x,y,z)≈
Nx

∑
i=1

(Ny

∑
j=1

(Nz

∑
k=1

(
di jkBi,p(x)B j,p(y)Bk,p(z)

)))
(12)

Now, our computational problem can be stated as follows:
Problem 1. We seek coefficients ax

1, . . . ,a
x
Nx

,by
1, . . . ,b

y
Ny

, cz
1, . . . ,c

z
Nz

to get the mini-
mum of

F(ax
1, . . . ,a

x
Nx ,b

y
1, . . . ,b

y
Ny
,cz

1, . . . ,c
z
Nz
)

=
∫

Ω

[(Nx

∑
i=1

aiBx
i,p

)(Ny

∑
j=1

b jB
y
j,p

)(Nz

∑
k=1

ckBz
k,p−

Nx

∑
i=1

(Ny

∑
j=1

(Nz

∑
k=1

(
di jkBi,p(x)B j,p(y)Bk,p(z)

)))]2

=
∫

Ω

[Nx

∑
i=1

(Ny

∑
j=1

(Nz

∑
k=1

(
aib jck−di jkBi,p(x)B j,p(y)Bk,p(z)

))]2
(13)

The minimum is realized when the partial derivatives are equal to zero:

∂F
∂ax

l
(ax

1, . . . ,a
x
Nx ,b

y
1, . . . ,b

y
Ny
,cz

1, . . . ,c
z
Nz
) = 0 (14)

∂F
∂by

l
(ax

1, . . . ,a
x
Nx ,b

y
1, . . . ,b

y
Ny
,cz

1, . . . ,c
z
Nz
) = 0 (15)

∂F
∂cz

l
(ax

1, . . . ,a
x
Nx ,b

y
1, . . . ,b

y
Ny
,cz

1, . . . ,c
z
Nz
) = 0 (16)

We compute these partial derivatives:

∂F
∂ax

l
(ax

1, . . . ,a
x
Nx ,b

y
1, . . . ,b

y
Ny
,cz

1, . . . ,c
z
Nz
) = 0

=
∫

Ω

[Ny

∑
j=1

(Nz

∑
k=1

(
2(alb jck−dl jk

)(∂ (aib jck)

∂ax
l
−

∂ (di jk)

∂ax
l

)
Bx

l,pBy
j,pBz

k,p)
)]

= 0,
(17)

where the internal term:

∂ (aib jck)

∂ax
l

=
∂ (ai)b jck

∂ax
l

+ai
∂ (b jck)

∂ax
l

= b jckδil +0, (18)

thus

=
∫

Ω

[Ny

∑
j=1

(Nz

∑
k=1

(
2(alb jck−dl jk

)
b jckBx

l,pBy
j,pBz

k,p

)]
= 0, l = 1, . . . ,Nx (19)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_12

https://dx.doi.org/10.1007/978-3-319-93701-4_12

Similarly we proceed with the rest of partial derivatives to obtain:

=
∫

Ω

[Nx

∑
i=1

(Nz

∑
k=1

(
2(aiblck−dilk

)
aickBx

i,pBy
l,pBz

k,p

)]
= 0, l = 1, . . . ,Ny (20)

=
∫

Ω

[Nx

∑
i=1

(Ny

∑
j=1

(
2(aib jcl−di jl

)
aib jBx

i,pBy
j,pBz

l,p

)]
= 0, l = 1, . . . ,Nz (21)

This is equivalent to the following system of equations:

Ny

∑
j=1

(Nz

∑
k=1

2
(
alb jck−dl jk

)
b jck

)
= 0 (22)

Nx

∑
i=1

(Nz

∑
k=1

2
(
aiblck−dilk

)
aick

)
= 0 (23)

Nx

∑
i=1

(Ny

∑
j=1

2
(
aib jcc−di jl

)
aib j

)
= 0 (24)

We have just got a non-linear system of Nx +Ny +Nz equations with Nx +Ny +Nz
unknowns:

al

(Ny

∑
j=1

(Nz

∑
k=1

(
b jck

)
b jck

))
=

Ny

∑
j=1

(Nz

∑
k=1

(
dl jkb jck

))
(25)

bl

(Nx

∑
i=1

(Nz

∑
k=1

(
aick

)
aick

))
=

Nx

∑
i=1

(Nz

∑
k=1

(
dilkaick

))
(26)

cl

(Nx

∑
i=1

(Ny

∑
j=1

(
aib j

)
aib j

))
=

Nx

∑
i=1

(Ny

∑
j=1

(
di jlaib j

))
, (27)

what implies:

al =
∑

Ny
j=1

(
∑

Nz
k=1 dl jkb jck

)
∑

Ny
j=1

(
∑

Nz
k=1

(
b jck

)2) (28)

bl =
∑

Nx
i=1

(
∑

Nz
k=1 dilkaick

)
∑

Nx
i=1

(
∑

Nz
k=1

(
aick

)2) (29)

We insert these coefficients into the third equation:

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_12

https://dx.doi.org/10.1007/978-3-319-93701-4_12

cl

Nx

∑
i=1

(
Ny

∑
j=1

(∑
Ny
m=1

(
∑

Nz
n=1 dimnbmcn

)
∑

Ny
m=1

(
∑

Nz
n=1(bmcn)2

))2(∑
Nx
m=1

(
∑

Nz
n=1 dm jnamcn

)
∑

Nx
m=1

(
∑

Nz
n=1(amcn)2

))2
)

=

=
Nx

∑
i=1

(
Ny

∑
j=1

di jl

∑
Ny
m=1

(
∑

Nz
n=1 dimnbmcn

)
∑

Ny
m=1

(
∑

Nz
n=1(bmcn)2

) ∑
Nx
m=1

(
∑

Nz
n=1 dm jnamcn

)
∑

Nx
m=1

(
∑

Nz
n=1(amcn)2

)) (30)

cl

Nx

∑
i=1

(
Ny

∑
j=1

(Ny

∑
m=1

(Nz

∑
n=1

dimnbmcn

))(Nx

∑
m=1

(Nz

∑
n=1

dm jnamcn

)))
=

=
Nx

∑
i=1

(
Ny

∑
j=1

di jl

)(
Nz

∑
n=1

(Ny

∑
m=1

(
bmcn

)2
))(Nz

∑
n=1

(Nx

∑
m=1

(
amcn

)2
)) (31)

cl

Nx

∑
i=1

(
Ny

∑
j=1

(Nz

∑
n=1

(Ny

∑
m=1

dimnbmcn

))(Nz

∑
n=1

(Nx

∑
m=1

dm jnamcn

)))
=

=
Nx

∑
i=1

(
Ny

∑
j=1

di jl

)(
Nz

∑
n=1

(Ny

∑
m=1

(
bmcn

)2
))(Nz

∑
n=1

(Nx

∑
m=1

(
amcn

)2
)) (32)

Fig. 1. The original configuration of static permeability

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_12

https://dx.doi.org/10.1007/978-3-319-93701-4_12

a) b)

Fig. 2. The result obtained from the heuristic algorithm (a) and from the heuristic plus genetic
algorithms (b).

a) b)

Fig. 3. The tensor product approximation after one (a) and five (b) iterations of Algorithm 1.

cl

Nx

∑
i=1

(
Ny

∑
j=1

(Nz

∑
n=1

(Ny

∑
m=1

dimnbmcn

))(Nx

∑
m=1

dm jnamcn

))
=

=
Nx

∑
i=1

(
Ny

∑
j=1

di jl

)(
Ny

∑
m=1

(
bmcn

)2

)(
Nz

∑
n=1

(Nx

∑
m=1

(
amcn

)2
)) (33)

Nx

∑
i=1

(
Ny

∑
j=1

(Nz

∑
n=1

(Ny

∑
m=1

(Nx

∑
o=1

do jnaocndimnbmcncl
))))

=

=
Nx

∑
i=1

(
Ny

∑
j=1

(Nz

∑
n=1

(Ny

∑
m=1

(Nx

∑
o=1

(aocnbmcn)
2di jl

)))) (34)

The above is true when

dimnbmcncldo jnaocn = (aocnbmcn)
2di jl , (35)

so:
dimncldo jn = aocnbmcndi jl (36)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_12

https://dx.doi.org/10.1007/978-3-319-93701-4_12

a) b)

Fig. 4. The tensor product approximation after ten (a) and fifty (b) iterations of Algorithm 1.

a) b)

Fig. 5. The error of the tensor product approximation after one (a), and five (b) iterations of
Algorithm 1.

thus:
do jndimn

di jl
=

aocnbmcn

cl
(37)

We can setup now a1, b1, and c1 arbitrary and compute cl using the derived propor-
tions.

In a similar way we compute al , namely we insert:

bl =
∑

Nx
i=1

(
∑

Nz
k=1 dilkaick

)
∑

Nx
i=1

(
∑

Nz
k=1

(
aick

)2) (38)

cl =
∑

Nx
i=1

(
∑

Ny
j=1 di jlaib j

)
∑

Nx
i=1

(
∑

Ny
j=1

(
aib j

)2) (39)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_12

https://dx.doi.org/10.1007/978-3-319-93701-4_12

a) b)

Fig. 6. The error of the tensor product approximation after ten (a), and fifty (b) iterations of
Algorithm 1.

into

al

(Ny

∑
j=1

(Nz

∑
k=1

(Nx

∑
m=1

(Nz

∑
n=1

(dm jnamcn)
)(Nx

∑
m=1

(Ny

∑
n=1

(dmnkambn)
)))))

=

=
(Ny

∑
j=1

(Nz

∑
k=1

dl jk

)(Nx

∑
m=1

(Nz

∑
n=1

(amcn)
2
))(Nx

∑
m=1

(Ny

∑
n=1

(ambn)
2
)))

,

(40)

then:

al

(Ny

∑
j=1

(Nz

∑
k=1

((Nx

∑
m=1

(Nz

∑
n=1

dm jnamcn

)(Ny

∑
o=1

dmokambo

)))))
=

=
Ny

∑
j=1

(Nz

∑
k=1

dl jk

)(Nx

∑
m=1

(Nz

∑
n=1

(amcn)
2
))(Nx

∑
m=1

(Ny

∑
o=1

(ambo)
2
))

,

(41)

and finally:

Ny

∑
j=1

(Nz

∑
k=1

((Nx

∑
m=1

(Nz

∑
n=1

(Ny

∑
o=1

aldmokambodm jnamcn

)))))
=

=
Ny

∑
j=1

(Nz

∑
k=1

(Nx

∑
m=1

(Nz

∑
n=1

(Nx

∑
m=1

(Nz

∑
n=1

(amboamcn)
2dl jk

)))))
,

(42)

what results in:

aldmokambodm jnamcn = (amboamcn)
2dl jk, (43)

so:
aldmokdm jn = amboamcndl jk, (44)

thus:
dmokdm jn

dl jk
=

amboamcn

al
(45)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_12

https://dx.doi.org/10.1007/978-3-319-93701-4_12

We compute bl from (we already have ai and ck):

bl =
∑

Nx
i=1

(
∑

Nz
k=1 dilkaick

)
∑

Nx
i=1

(
∑

Nz
k=1

(
aick

)2) (46)

The just analyzed Problem 1 has multiple solutions, and the algorithm presented
above finds one exemplary solution, for the assumed values of a1, b1, and c1.

This however may not be the optimal solution, in the sense of equation (13), and
thus we may improve the quality of the solution executing simple genetic algorithm,
with the individuals representing the parameters ax

1, . . . ,a
x
Nx
,by

1, . . . ,b
y
Ny
,cz

1, . . . ,c
z
Nz

, and
with the fitness function defined as (13).

4 Iterative algorithm with evolutionary computations

The heuristic algorithm mixed with the genetic algorithm, as presented in section 3, is
not able to find the solution with 0 error, for non-tensor product structures, since we
approximate N ∗N data with 2∗N unknowns. Thus, the iterative algorithm presented in
1 is proposed, with the assumed accuracy ε .

Algorithm 1 Iterative algorithm with evolutionary computations
1: m=1
2: Bitmap[m](x,y,z)=K(x,y,z)
3: repeat
4: Find di jk for Bitmap[m](x,y,z) ≈ ∑

Nx
i=1

(
∑

Ny
j=1

(
∑

Nz
k=1

(
di jkBi,p(x)B j,p(y)Bk,p(z)

)))
us-

ing the linear computational cost isogeometric L2 projection algorithm
5: Find ax

1, . . . ,a
x
Nx
,by

1, . . . ,b
y
Ny
,cz

1, . . . ,c
z
Nz

to minimize

F [m]
(
ax

1, . . . ,a
x
Nx
,by

1, . . . ,b
y
Ny
,cz

1, . . . ,c
z
Nz

)
given by (13) using the heuristic algorithm to

generate initial population and the genetic algorithm to improve the tensor product ap-
proximations

6: m = m+1
7: Bitmap[m](x,y,z)=Bitmap[m-1](x,y,z)-

(
∑

Nx
i=1 aiBx

i,p

)(
∑

Ny
j=1 b jB

y
j,p

)(
∑

Nz
k=1 ckBz

k,p

)
8: until F [m]

(
ax

1, . . . ,a
x
Nx
,by

1, . . . ,b
y
Ny
,cz

1, . . . ,c
z
Nz

)
≥ ε

In the aforementioned algorithm we approximate the static permeability as a se-
quence of tensor product approximations:

K(x,y,z) =
M

∑
m=1

Kx
m(x)K

y
m(y)K

z
m(z) (47)

Practically, it is realized according to the following equations:

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_12

https://dx.doi.org/10.1007/978-3-319-93701-4_12

(
ut+m,υ

)
−
(

Kx
m(x)e

µut+m−1(x)
)(

Ky
m(x)e

µut+m−1(y)
)(

Kz
m(x)e

µut+m−1(z)
)

∇ut+m,∇υ

)
=− ∑

n=1,m 6=n

(
Kx

n(x)e
µut+n(x)Ky

n(y)e
µut+n(y)Kz

n(z)e
µut+n(z)∇ut+n,∇υ

)
+
(

f ,υ
)
+Kx

m(x)K
y
m(y)K

z
m(z)[(

eµut+m(x)eµut+m−1(y)eµut+m−1(z)
)
− eµut+m−1(x,y,z)

]
∇u,∇υ

)
∀υ ∈V

(48)

5 Numerical results

We conclude the paper with the numerical results concerning the approximation of the
static permeability map. The original static permeability map is presented in Figure 1.
The first approximation has been obtained from the heuristic algorithm described in
section 3. We used the formulas (25)-(27) with the suitable substitutions. In the first
approach we first compute the values of a, next, the values of b and finally the values of
c. As the initial values we picked 3

√
d111.

Deriving this method further we decided to compute particular points in the order
of a2, b2, c2, a3, b3 and so on. This gave us the final result presented in Figure 2a.

We have improved the approximation by post-processing with the generational ge-
netic algorithm as implemented in jMetal package [13] with variables from [0,1] inter-
vals. The fitness function was defined as:

f (a1, . . . ,aNx ,b1, . . . ,bNy ,c1, . . . ,cNz) =
Nx

∑
i=1

Ny

∑
l=1

Nz

∑
k=1

(
dilk−aiblck

)2
(49)

The results are summarized in Figure 2b.
To improve the numerical results we have employed the Algorithm 1. In Figure 3

and Figure 4 results obtained after 1, 5, 10 and 50 iterations of Algorithm 1 are pre-
sented.

In order to analyze the accuracy of the tensor product approximation, we also
present in Figures 5–6 the error after 1, 5, 10, 50 iterations. We can read from these
Figures, how the error decreases when adding particular components.

6 Conclusions and the future work

In the paper the heuristic algorithm for tensor product approximation of material data
for implicit dynamics simulations of non-linear flow in heterogeneous media is pre-
sented.

The algorithm can be used as a generator of initial configurations for a genetic
algorithm, improving the quality of the approximation. The future work will involve
the implementation of the implicit scheme and utilizing the proposed algorithms as a
preconditioner for obtaining tensor product structure of the material data.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_12

https://dx.doi.org/10.1007/978-3-319-93701-4_12

We have analyzed the convergence of our tensor product approximation method but
assessing how the convergence influences the reduction of the iteration number of the
explicit method will be the matter of our future experiments.

Our intuition is that 100 iterations (100 components of the tensor product approxi-
mation) should give a well approximation, and thus we can use the implicit method not
bounded by the CFL condition, which will require 100 sub-steps in every time step.

Acknowledgments

This work was supported by National Science Centre, Poland, grant no.
2014/15/N/ST6/04662. The authors would like to acknowledge prof. Maciej Paszyński
for his help in this research topic and preparation of this paper.

References

1. Łoś M, Woźniak M, Paszyński M, Dalcin L, Calo VM (2015) Dynamics with
Matrices Possessing Kronecker Product Structure, Procedia Comput Sci 51:286-295.
doi:10.1016/j.procs.2015.05.243

2. Łoś M, Woźniak M, Paszyński M, Lenharth A, Amber-Hassan M, Pingali K (2017) IGA-
ADS: Isogeometric analysis FEM using ADS solver, Comput Phys Commun 217:99-116.
doi:10.1016/j.cpc.2017.02.023

3. Woźniak M, Łoś M, Paszyński M, Dalcin L, Calo VM (2017) Parallel fast isogeometric solvers
for explicit dynamics, Comput Inform 36(2):423-448. doi:10.4149/cai.2017.2.423

4. Siwik L, Łoś, Kisiel-Dorohinicki M, Byrski A (2016) Hybridization of isogeometric finite el-
ement method and evolutionary mulit-agent system as a tool-set for multi-objective optimiza-
tion of liquid fossil fuel exploitation with minimizing groundwater contamination, Procedia
Comput Sci, 80:792-803. doi:10.1016/j.procs.2016.05.369

5. Łoś M (2015) Fast isogeometric L2 projection solver for non-linear flow in non-homogenous
media, Master Thesis, AGH University, Krakow, Poland

6. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite ele-
ments, NURBS, exact geometry and mesh refinement, Comput Methods Appl Mech Eng
194(39):4135-4195. doi:10.1016/j.cma.2004.10.008

7. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric Analysis: Toward Unfication of
CAD and FEA, John Wiley and Sons. The Attrium, Southern Gate, Chichester, West Sussex

8. Courant R, Friedrichs K, Lewy H (1956) On the partial difference equations of mathematical
physics, AEC Research and Development Report, NYO-7689, New York: AEC Computing
and Applied Mathematics Centre-Courant Institute of Mathematical Sciences

9. Paszyński M, Ło{s, Calo VM (2017) Fast isogeometric solvers for implicit dynamics, submit-
ted to Comput Math Appl

10. Alotaibi M, Calo VM, Efendiev Y, Galvis J, Ghommem M (2015) Global-Local Nonlinear
Model Reduction for Flows in Heterogeneous Porous Media, Comput Methods Appl Mech
Eng 292:122-137. doi:10.1016/j.cma.2014.10.034

11. Efendiev Y, Ginting V, Hou T (2004) Multiscale finite element methods for
nonlinear problems and their applications, Commun Math Sci, 2(4):553-589. doi:
10.4310/CMS.2004.v2.n4.a2

12. Warrick AW (1976) Time-dependent linearized in filtration: III. strip and disc sources, Soil
Sci Soc Am J, 40:639-643. doi:

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_12

https://dx.doi.org/10.1007/978-3-319-93701-4_12

13. Nebro AJ, Durillo JJ, Vergne M (2015) Redesigning the jMetal Multi-Objective Optimization
Framework, Proceedings of the Companion Publication of the 2015 Annual Conference on
Genetic and Evolutionary Computation, GECCO Companion ’15

14. Siwik L, Łoś M, Kisiel-Dorohinicki M, Byrski A (2016) Evolutionary Multiobjective Opti-
mization of Liquid Fossil Fuel Reserves Exploitation with Minimizing Natural Environment
Contamination, Artificial Intelligence and Soft Computing: 15th International Conference,
Zakopane, Poland, June 12-16, Proceedings, Part II, 384-394.

15. Goreinov SA, Tyrtyshnikov EE, Zamarashkin NL (1997) A theory of pseudoskeleton
approximations, Linear Algebra and its Applications 261(1-3):1-21. doi:10.1016/S0024-
3795(96)00301-1

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_12

https://dx.doi.org/10.1007/978-3-319-93701-4_12

