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Abstract. This article proposes a bivariate compensated Volk and Schu-
maker (CompVSTP) algorithm, which extends the compensated Volk and
Schumaker (CompVS) algorithm, to evaluate Bèzier tensor product sur-
faces with floating-point coefficients and coordinates. The CompVSTP al-
gorithm is obtained by applying error-free transformations to improve
the traditional Volk and Schumaker tensor product (VSTP) algorithm.
We study in detail the forward error analysis of the VSTP, CompVS and
CompVSTP algorithms. Our numerical experiments illustrate that the Comp-
VSTP algorithm is much more accurate than the VSTP algorithm, relegat-
ing the influence of the condition numbers up to second order in the
rounding unit of the computer.
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1 Introduction

Tensor product surfaces are bivariate polynomials in tensor product form. In
monomial basis, tensor product polynomials are expressed in the following form,

p(x, y) =
n∑

i=0

m∑
j=0

ci,jx
iyj .

In Computer Aided Geometric Design (CAGD), tensor product surfaces are
usually represented in Bézier form [1]

p(x, y) =

n∑
i=0

m∑
j=0

ci,jB
n
i (x)B

m
i (y), (x, y) ∈ [0, 1]× [0, 1],
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2 J. Lan et al.

where Bk
i (t) is the Bernstein polynomial of degree k as

Bk
i (t) =

(
k
i

)
(1− t)k−iti, t ∈ [0, 1], i = 0, 1, . . . , k.

The de Casteljau algorithm [2, 3] is the usual polynomial evaluation algorithm in
CAGD. Nevertheless, evaluating a polynomial of degree n, the de Casteljau algo-
rithm needs O(n2) operations, in contrast to the O(n) operations of the Volk and
Schumaker (VS) algorithm [4]. The VS basis zn := (zn0 (t), z

n
1 (t), . . . , z

n
n(t))(t ∈

[0, 1]) is given by zni (t) = ti(1 − t)n−i. Otherwise, the VS algorithm consist of
Horner algorithm. For evaluating tensor product surfaces, de Casteljau and VS
algorithms are more stable and accurate than Horner algorithm [1]. And these
three algorithms satisfy the relative accuracy bound

|p(x, y)− p̂(x, y)|
|p(x, y)|

≤ O(u)× cond(p, x, y),

where p̂(x, y) is the computed result, u is the unit roundoff and cond(p, x, y) is
the condition number of p(x, y).

From 2005 to 2009, Graillat et al proposed compensated Horner scheme for
univariate polynomials in [5–7]. From 2010 to 2013, Jiang et al presented com-
pensated de Casteljau algorithms to evaluate univariate polynomials and its first
order derivative in Bernstein basis in [8], to evaluate bivariate polynomials in
Bernstein-Bézier form in [9], and to evaluate Bézier tensor product surfaces in
[10]. From 2014 to 2017, Du et al improved Clenshaw-Smith algorithm [11] for
Legendre polynomial series with real number coefficients, bivariate compensated
Horner algorithm [12] for tensor product polynomials and the quotient-difference
algorithm [13] which is a double nested algorithm. All these algorithms can yield
a full precision accuracy in double precision as applying double-double library
[14].

This paper presents new compensated VS algorithms, which have less com-
putational cost than compensated de Casteljau algorithm, to evaluate tensor
product polynomial surfaces by applying error-free transformations which is
exhaustively studied in [15–17]. The relative accuracy bound of our proposed
compensated algorithms is satisfied

|p(x, y)− p̂(x, y)|
|p(x, y)|

≤ u+O(u2)× cond(p, x, y),

where p̂(x, y) is computed by the compensated algorithms.

The rest of the paper is organized as follows. Section 2 introduces basic
notation in error analysis, error-free transformations and condition numbers are
also given. Section 3 presents the new compensated VS tensor product algorithm
and its error analysis. Finally all the error bounds are compared in numerical
experiments in section 4.
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2 Preliminary

2.1 Basic notations

We assume to work with a floating-point arithmetic adhering to IEEE-754 floating-
point standard rounding to nearest. In our analysis we assume that there is
no computational overflow or underflow. Let op ∈ {⊕,⊖,⊗,⊘} represents a
floating-point computation, and the evaluation of an expression in floating-point
arithmetic is denoted fl(·), then its computation obeys the model

a op b = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2), (1)

where a, b ∈ F (the set of floating-point numbers), ◦ ∈ {+,−,×,÷} and |ε1|, |ε2| ≤
u (u is the round-off unit of the computer). We also assume that if a ◦ b = x
for x ∈ R, then the computed result in floating-point arithmetic is denoted by
x̂ = a op b, and its perturbation is ϵx, i.e.

x̂ = x+ ϵx. (2)

The following definition and properties will be used in the forward error
analysis (see more details in [18]).

Definition 1. We define

1 + θn =

n∏
i=1

(1 + δi)
ρi , (3)

where |δi| ≤ u, ρi = ±1 for i = 1, 2, . . . , n, |θn| ≤ γn :=
nu

1− nu
= nu + O(u2)

and nu < 1.

Some basic properties in Definition 1 are given by:

– u+ γk ≤ γk+1,
– iγk < γik,
– γk + γj + γkγj ≤ γk+j ,
– γiγj ≤ γi+kγj−k, if 0 < k < j − i.

2.2 Error-free transformations

The development of some families of more stable algorithms, which are called
compensated algorithms, is based on the paper [15] on error-free transformations
(EFT). For a pair of floating-point numbers a, b ∈ F, when no underflow occurs,
there exists a floating-point number y satisfying a◦ b = x+y, where x = fl(a◦ b)
and ◦∈{+,−,×}. Then the transformation (a, b) −→ (x, y) is regarded as an
EFT. For division, the corresponding EFT is constructed using the remainder,
so its definition is slightly different (see below). The EFT algorithms of the sum,
product and division of two floating-point numbers are the TwoSum algorithm
[19], the TwoProd algorithm [20] and the DivRem algorithm [21, 22], respectively.
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2.3 Condition numbers

The condition number of polynomials is with respect to the difficulty of the
evaluation algorithm. We assume to evaluate a bivariate polynomial p(x, y) in
basis u ∈ U at the point (x, y), then for any (x, y) ∈ I, we have

|p(x, y)− p̂(x, y)| = |
n∑

i=0

m∑
j=0

ci,ju
n
i (x)u

m
i (y)|

≤
n∑

i=0

m∑
j=0

|ci,j ||un
i (x)||um

i (y)|.
(4)

We assume that

p̄(x, y) :=

n∑
i=0

m∑
j=0

|ci,j ||un
i (x)||um

i (y)|, (5)

then the relative condition number is

cond(p, x, y) =
p̄(x, y)

|p(x, y)|
. (6)

In [23], it is known that the condition number in VS basis is as same as in
Bernstein basis.

3 The compensated VS algorithm for Bézior tensor
product surfaces

In this section, we show the VS algorithms, including univariate and bivariate
ones. We provide a compensated VSTP algorithm for evaluating Bézior tensor
product polynomials. Its forward error bound is also given in the end.

3.1 VS algorithm

The VS algorithm is a nested-type algorithm for the evaluation of bivariate
polynomials of total degree n by Schumaker and Volk [4]. Basically, the VS
tensor product algorithm could be represented by the univariate VS algorithm.

Theorem 1 states the forward error bound of VS algorithm.

Theorem 1. [24] Let p(t) =
∑n

i=0 ciz
n
i (t) with floating point coefficients ci and

a floating point value t. Consider the computed result p̂(t) with the VS algorithm
and its corresponding theoretical result p(t), if 4nu < 1 where u is the unit
roundoff, then

|p(t)− p̂(t)| ≤ γ4n

n∑
i=0

|cizni (t)|. (7)

Similar as Theorem 4 in [10], the forward error bound of the VSTP algorithm
is easily performed in Theorem 2.
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Algorithm 1 Volk-Schumaker algorithm [4] (x ∈ [0, 1])

function res = VS(p, x)
if x ≥ 1/2

q = (1⊖ x)⊘ x
f = Horner((p1, p2, . . . , pn), q)
res = f ⊗ xn

else
q = x⊘ (1⊖ x)
f = Horner((pn−1, pn−2, . . . , p0), q)
res = f ⊗ (1⊖ x)n

end

Algorithm 2 VS tensor product algorithm

function V STP (p, x, y)
for i = n : −1 : 0

b̂i,0 = V S(ci,:, y)
end
â0 = V S(̂b:,0, x)
V STP (p, x, y) ≡ â0

Theorem 2. Let p(x, y) =
∑n

i=0

∑m
j=0 ci,jz

n
i (x)z

m
i (y) with floating point coef-

ficients ci,j and floating point values x, y. Consider the computed result p̂(x, y)
of the VSTP algorithm and its corresponding theoretical result p(x, y), if (4n +
4m+ 1)u < 1 where u is the unit roundoff, then

|p(x, y)− p̂(x, y)| ≤ γ4(n+m)+1p̄(x, y), (8)

where p̄(x, y) is defined in (5) in VS basis.

3.2 The CompVSTP algorithm

The CompVS algorithm [23] is proposed by Delgado and Peña, which is as
accurate as computing in twice the working precision by VS algorithm. In this
section, in order to easily provide the forward error bound of CompVS algorithm,
we show a compensated Horner algorithm with double-double precision input in
Algorithm 3. A compensated power evaluation algorithm in Algorithm 4 is also
given.

In Algorithm 3, assuming input x is real number, and we split x into three
parts, i.e. x = x(h) + x(l) + x(m),where x(h), x(l) ∈ F, x, x(m) ∈ R and |x(l)| ≤
u|x(h)|, |x(m)| ≤ u|x(l)|. Since the perturbation of input x(m) in Algorithm 3
is O(u2), we just need to consider x in double-double precision. According to
Theorem 3.1 in [25], the proof of forward error bound of Algorithm 3 in the
following theorem is similar as Theorem 12 in [11] .

Theorem 3. If p(x) =
∑n

i=0 aix
i (n ≥ 2) with floating point coefficients ai and

a double-double precision number x. And ϵ̂b0 is the computed result err of the
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6 J. Lan et al.

Algorithm 3 Compensated Horner scheme with double-double precision inputs

function [res, err] = CompHorner2(p, x(h), x(l))

b̂n+1 = ϵ̂bn+1 = 0
for i = n : −1 : 0

[si, πi] = TwoProd(̂bi+1, x
(h))

[̂bi, σi] = TwoSum(si, ai)

ϵ̂bi = ϵ̂bi+1 ⊗ x(h) ⊕ b̂i+1 ⊗ x(l) ⊕ πi ⊕ σi

end
[res, err] = [̂b0, ϵ̂b0]

CompHorner2(p, x) ≡ b̂0 ⊕ ϵ̂b0

CompHorner2 algorithm, ϵb0 is corresponding theoretical result of ϵ̂b0. Then

|ϵb0 − ϵ̂b0| ≤ γ3n−1γ3n

n∑
i=0

|ai||xi|. (9)

Graillat proposes a compensated power evaluation algorithm [26] as follows.

Algorithm 4 Compensated power evaluation[26]

function [res, err] = CompLinPower(x, n)
p0 = x
e0 = 0
for i = 1 : n− 1

[pi, πi] = TwoProd(pi−1, x)
end
[res, err] = [pn, Horner((π1, π2, . . . , πn−1), x)]
CompLinpower(x, n) ≡ res⊕ err

Theorem 4. [26] If p(x) = xn (n ≥ 2) with a floating-point number x. And ê
is the computed result err of the CompLinpower algorithm, e is corresponding
theoretical result of ê. Then

|e− ê| ≤ γnγ2n|xn|. (10)

In [23], Delgado and Peña present the running error analysis of CompVS
algorithm, but they do not propose its forward error analysis. Here, combining
Algorithms 3 and 4, we show the CompVS algorithm in the following algorithm
which is expressed a little different in [23].

In Algorithm 5, we can easily obtain that [q(h), q(l)] is the double-double form
of q = (1− x)/x if x ≥ 1/2 or q = x/(1− x) if x > 1/2. Then, according to
Theorems 1, 3 and 4, the forward error bound of CompVS algorithm is proposed
in Theorem 5.
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Algorithm 5 Compensated Volk-Schumaker algorithm (x ∈ [0, 1])

function [res, err] = CompVS(p, x)
[r, ρ] = TwoSum(1,−x)
if x ≥ 1/2

[q(h), β] = DivRem(r, x)
q(l) = (ρ⊕ β)⊘ x
[f, e1] = CompHorner2((p1, p2, . . . , pn), q

(h), q(l))
[s, e2] = CompLinPower(x, n)
[res, err] = [f ⊗ s, e1 ⊗ s⊕ e2 ⊗ f ]

else
[q(h), β] = DivRem(x, r)
q(l) = (β ⊖ ρ⊗ q(h))⊘ r
[f, e1] = CompHorner2((pn−1, pn−2, . . . , p0), q

(h), q(l))
[s, e2] = CompLinPower(r, n)
[res, err] = [f ⊗ s, e1 ⊗ s⊕ e2 ⊗ f ]

end
CompVS(x, n) ≡ res⊕ err

Theorem 5. If p(t) =
∑n

i=0 ciz
n
i (t) with floating point coefficients ci and a

floating point value t. And ϵ̂b0 is the computed result err of the CompVS algo-
rithm, ϵb0 is corresponding theoretical result of ϵ̂b0. Then

|ϵb0 − ϵ̂b0| ≤ γ3n+1γ3n+2

n∑
i=0

|cizni (t)|. (11)

Proof. In Algorithm 5, we assume that f̂+e1 =
∑n

i=1 piq
i and ŝ+e2 = xn . Then,

we can obtain that p(t) = (f̂ +e1)(ŝ+ e2) and assume that e = e1ŝ+e2f̂ +e1e2.

Since ê = ê1 ⊗ ŝ⊕ ê2 ⊗ f̂ , we have

|e− ê|

≤ |(1 + u)2[(e1 − ê1)ŝ+ (e2 − ê2)f̂ + e1e2]− (2u+ u2)e|

≤ (2u+ u2)|e|+ (1 + u)2(|e1 − ê1||ŝ|+ |e2 − ê2||f̂ |).

(12)

From Theorem 1, let p̄(t) = |cizni (t)|, we obtain that

|e| ≤ γ4np̄(t). (13)

Thus
(2u+ u2)|e| ≤ γ2γ4n+1p̄(t). (14)

According to Theorem 3, we have

(1 + u)2|e1 − ê1||ŝ| ≤ γ3nγ3n+1p̄(x) +O(u2). (15)

According to Theorem 4, we have

(1 + u)2|e2 − ê2||f̂ | ≤ γn+1γ2n+1p̄(x) +O(u2). (16)

From (14) (15) and (16), we can deduce (11).
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In fact, p(x) = p̂(x) + ϵb0, where ϵb0 is corresponding theoretical error of the
computed result p̂(x). In order to correct the result by Algorithm 1, Algorithm 5

find an approximate value ϵ̂b0 of ϵb0. Motivated by this principle, we propose to
use the CompVS algorithm instead of VS algorithm in Algorithm 2 to improve
the accuracy of VSTP algorithm. According to Algorithm 2, we assume that

bi,0 = b̂i,0 + err
(1)
i,0 , 0 ≤ i ≤ n, (17)

where err
(1)
i,0 is the theoretical error of b̂i,0 = VS(ci,:, y) and

bi,0 =

m∑
j=0

ci,jz
m
i (y), (18)

is the exact result for each i. Similarly, we have

ã0 = â0 + err(2), (19)

where err(2) is the theoretical error of â0 = VS(̂b:,0, x) and

ã0 =

n∑
i=0

b̂i,0z
n
i (x), (20)

is the exact result. According to (17)-(20), we can deduce

n∑
i=0

m∑
j=0

ci,jz
n
i (x)z

m
i (y) = â0 +

n∑
i=0

err
(1)
i,0 z

n
i (x) + err(2), (21)

i.e.

p(x, y) = p̂(x, y) +

n∑
i=0

err
(1)
i,0 z

n
i (x) + err(2). (22)

Using CompVS algorithm, we can easily get the approximation values of err
(1)
i,0

and err(2), i.e. êrr
(1)
i,0 and êrr

(2)
. Thus, we propose the CompVSTP algorithm

for evaluating Bézier tensor product polynomials in Algorithm 6.

From (21) and (22), we assume that e1 =
∑n

i=0 err
(1)
i,0 z

n
i (x) and e2 = err(2) so

that the real error of the computed result is e = e1+e2, i.e. p(x, y) = p̂(x, y)+e.
Firstly, we present the bound of |e1 − ê1| in Lemma 1.

Lemma 1. From Algorithm 6, we assume that e1 =
∑n

i=0 err
(1)
i,0 z

n
i (x). Then we

have

|e1 − ê1| ≤ (γ3n+1γ3n+2(1 + γ4m) + γ4nγ4mp̄(x, y), (23)

where p̄(x, y) is defined in (5) in VS basis.
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Algorithm 6 Compensated VSTP algorithm (x ∈ [0, 1])

function [res, err] = CompVSTP(p, x, y)

f
(0)
i,j = bi,j
for i = 1 : m

[f̂
(1)
i,0 , êi,0] = CompVS(f

(0)
i,: , y)

end
[f̂

(2)
0,0 , ê2] = CompVS(f̂

(1)
:,0 , x)

[res, err] = [f̂
(2)
0,0 , ê2⊕ VS(ê1:,0, x)]

CompVSTP(p, x, y) ≡ res⊕ err

Proof. We denote that

ē1 =

n∑
i=0

êrr
(1)
i,0 z

n
i (x). (24)

Hence, we have
|e1 − ê1| ≤ |e1 − ē1|+ |ē1 − ê1|. (25)

According to Theorem 5, we have

|err(1)i,0 − êrr
(1)
i,0 | ≤ γ3n+1γ3n+2

m∑
j=0

|ci,jzmi (y)|, (26)

thus

|e1 − ē1| =
n∑

i=0

|err(1)i,0 − êrr
(1)
i,0 |z

n
i (x)

≤ γ3n+1γ3n+2

n∑
i=0

m∑
j=0

|ci,jzni (x)zmi (y)|.
(27)

According to Theorem 1, we obtain

|ē1 − ê1| ≤ γ4m

n∑
i=0

|êrr(1)i,0 z
n
i (x)|. (28)

Then we have that

|êrr(1)i,0 | ≤ |err(1)i,0 |+ |err(1)i,0 − |êrr(1)i,0 |. (29)

By Theorem 1, we have

|err(1)i,0 | ≤ γ4n

m∑
j=0

|ci,jzmi (y)|. (30)

From (26), (29) and (30), we deduce that

|êrr(1)i,0 | ≤ (γ3n+1γ3n+2 + γ4n)

m∑
j=0

|ci,jzmi (y)|, (31)
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and then from (28) we obtain

|ē1 − ê1| ≤ γ4m(γ3n+1γ3n+2 + γ4n)p̄(x, y). (32)

Hence, from (25), (27) and (32), we can obtain (23).

Then, we present the bound of |e2 − ê2| in Lemma 2.

Lemma 2. From Algorithm 6, we assume that e2 = err(2). Then we have

|e2 − ê2| ≤ γ3m+1γ3m+2(1 + γ4m)p̄(x, y), (33)

where p̄(x, y) is defined in (5) in VS basis.

Proof. According to Theorem 5, we have

|e2 − ê2| ≤ γ3m+1γ3m+2

n∑
i=0

|̂bi,0zni (x)|. (34)

From Theorem 1, we obtain

|̂bi,0| ≤
m∑
j=0

(1 + γ4m)|ci,jzmi (y)|. (35)

Hence, from (34) and (35), we can deduce (33).

Above all, the forward error bound of CompVSTP algorithm is performed in
the following theorem.

Theorem 6. Let p(x, y) =
∑n

i=0

∑m
j=0 ci,jz

n
i (x)z

m
i (y) with floating point coef-

ficients ci,j and floating point values x, y. The forward error bound of Algorithm
6 is

|CompV STP (p, x, y)− p(x, y)| ≤ u|p(x, y)|+ 3(γ2
4n+2 + γ2

4m+2)p̄(x, y), (36)

where p̄(x, y) is defined in (5) in VS basis.

Proof. We assume that e1 =
∑n

i=0 err
(1)
i,0 x

i and e2 = err(2) so that e = e1 + e2.
From (22), we have

p(x, y) = p̂(x, y) + e, (37)

and from Algorithm 6, we have

CompVSTP(p, x, y) = p̂(x, y)⊕ ê. (38)

Hence

|CompVSTP(p, x, y)− p(x, y)| ≤ |(1 + u)(p(x, y)− e+ ê)− p(x, y)|
≤ u|p(x, y)|+ (1 + u)|e− ê|.

(39)
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Since ê = ê1 ⊕ ê2, we have

|e− ê| ≤ |(1 + u)(e1 − ê1 + e2 − ê2)− ue|
≤ u|e|+ (1 + u)(|e1 − ê1|+ |e2 − ê2|).

(40)

From Theorem 2, we obtain that

|e| ≤ γ4(n+m)+1p̄(x, y). (41)

Thus

u(1+u)|e| ≤ γ1γ4(n+m+1)p̄(x, y) ≤ γ4n+2γ4m+2p̄(x, y) ≤
1

2
(γ2

4n+2+γ2
4m+2)p̄(x, y).

(42)
According to Lemma 1, we have

(1 + u)2|e1 − ê1| ≤ (2γ2
4n+1 + γ4n+1γ4m+1)p̄(x, y)

≤ (
5

2
γ2
4n+1 +

1

2
γ2
4m+1)p̄(x, y).

(43)

According to Lemma 2, we have

(1 + u)2|e2 − ê2| ≤ 2γ2
4m+1p̄(x, y). (44)

From (42) (43) and (44), we can deduce (36).

According to the relative condition number defined in (6), we can deduce
Corollary 1.

Corollary 1. Let p(x, y) =
∑n

i=0

∑m
j=0 ci,jz

n
i (x)z

m
i (y) with floating point coef-

ficients ci,j and floating point values x, y. The forward relative error bound of
Algorithm 6 is

|CompV STP (p, x, y)− p(x, y)|
|p(x, y)|

≤ u+ 3(γ2
4n+2 + γ2

4m+2)cond(p, x, y). (45)

4 Numerical experiments

In this section, we compare CompVSTP algorithm against an implementation of
VSTP algorithm that applies the double-double format [14, 27] which we denote
as DDVSTP algorithm. In fact, since the working precision is double precision,
the double-double arithmetic is the most efficient way to yield a full precision
accuracy of evaluating polynomials. Moreover, we also compare CompVSTP
algorithm against compensated de Casteljau (CompDCTP) algorithm [10].

All our experiments are performed using IEEE-754 double precision as work-
ing precision. All the programs about accuracy measurements have been written
in Matlab R2014a on a 1.4-GHz Intel Core i5 Macbook Air. We focus on the
relative forward error bounds for ill-conditioned Bézier tensor product polynomi-
als. We use a similar GenPoly algorithm [10, 21] to generate tested polynomials
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Fig. 1. Accuracy of evaluation of ill-conditioned Bézier tensor product polynomials
with respect to the condition number

p(x, y). The generated polynomials are 6 × 7 degree with condition numbers
varying from 104 to 1036, x and y are random numbers in [0, 1] and the in-
spired computed results of all the tested polynomials are 1. We evaluate the
polynomials by the VSTP, CompVSTP, CompDCTP, DDVSTP algorithms and
the Symbolic Toolbox, respectively, so that the relative forward errors can be
obtained by (|pres(x, y)− psym(x, y)|)/|psym(x, y)| and the relative error bounds
are described from Corollary 1. Note that the condition number of Bézier tensor
product polynomials in Bernstein basis evaluated by CompDCTP algorithm is
as same as in VS basis evaluated by CompVSTP algorithm. Then we present the
relative forward errors of evaluation of the tested polynomials in Figure 1. As
we can see, the relative errors of CompVSTP, CompDCTP and DDVSTP algo-
rithms are both smaller than u (u ≈ 1.16× 10−16) when the condition number
is less than 1016. And the accuracy of them is decreasing linearly for the condi-
tion number larger than 1016. However, the VSTP algorithm can not yield the
working precision; the accuracy of which decreases linearly since the condition
number is less than 1016.

At last, we give the computational cost of VSTP, CompVSTP, CompDCTP
and DDVSTP algorithms.

– VSTP: (3n+2)(m+1)+3m+2 flops,
– CompVSTP: (50n+26)(m+1)+50m+26+1 flops,
– CompDCTP: (24n2+24n+7)(m+1)+24m2+24m+7+1 flops,
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– DDVSTP: (68n+120)(m+1)+68m+120 flops.

CompVSTP and DDVSTP algorithms require almost 17 and 23 times flop than
VSTP algorithm, respectively. Meanwhile, CompDCTP algorithm requiresO(n2m)
flop which is much more than O(nm). Hence, CompVSTP algorithm only needs
about 73.5% of flops counting on average of DDVSTP algorithm and needs much
less computational cost than CompDCTP algorithm. Meanwhile, CompVSTP
algorithm is as accurate as CompDCTP and DDVSTP algorithms.

5 Conclusions and further work

In this paper, we present CompVSTP algorithm to evaluate Bézier tensor prod-
uct polynomials, which are compensated algorithms that obtaining an approxi-
mate error to correct the computed results by original algorithm. The proposed
algorithm is as accurate as computing in double-double arithmetic which is the
most efficient way to yield a full precision accuracy. Moreover, it needs fewer
flops than counting on average with double-double arithmetic.

A similar approach can be applied to other problems to obtain compen-
sated algorithms. For example we can consider the evaluation of ill-conditioned
tensor product polynomials in orthogonal basis like Chebyshev and Legendre
basis. Instead of tensor product surfaces, we can consider triangle surfaces like
Bernstein-Bézier form. We can also study compensated algorithms for multivari-
ate polynomials.
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